Query 3

#$&*

course MTH 151

1/28/2015

Question: `qQuery 2.3.15 This might differ from the problem as given in the text, but you should be able to answer it for the given sets: universal set U = {a,b, c,…,g}, X={a,c,e,g}, Y = {a,b,c}, Z = {b, ..., f}

What is the set ( Y ^ Z ' ) U X?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The set contains everything that is at least in one of the groups. so ( a, c, e, g) .

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Z' = {a,g}, the set of all elements of the universal set not in Z. Y ^ Z' = {a}, since a is the only element common to both Y and Z'.

So (Y ^ Z') U X = {a, c, e, g}, the set of all elements which lie in at least one of the sets (Y ^ Z') U X. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qGive the intersection of the two sets Y and Z '

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y ^ Z = (a)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Z' = {a,g}, the set of all elements of the universal set not in Z. Y ^ Z' = {a}, since a is the only element common to both Y and Z'.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:2

*********************************************

Question: `qQuery 2.3.32 (formerly 2.3.30). This was not assigned, but you answered a series of similar questions and should be able to give a reasonable answer to this one: Describe in words (A ^ B' ) U (B ^ A')

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Elements in A that is not in B or elements that is not in A that is in B.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** a description, not using a lot of set-theoretic terms, of (A ^ B' ) U (B ^ A') would be, all the elements that are in A and not in B, or that are not in A and are in B

Or you might want to say something like 'elements which are in A but not B OR which are in B but not A'.

STUDENT SOLUTION WITH INSTRUCTOR COMMENT:everything that is in set A and not in set B or everything that is in set B and is not in set A.

INSTRUCTOR COMMENT: I'd avoid the use of 'everything' unless the word is necessary to the description. Otherwise it's likely to be misleading. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q2.3.53 (formerly 2.3.51) Is it always or not always true that n(A U B) = n(A)+n(B)? This was not among the assigned questions but having completed the assignment you should be able to answer this.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It is not always true.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** This conclusion is contradicted by many examples, including the one of the dark-haired and bright-eyed people in the q_a_.

Basically n(A U B) isn't equal to n(A) + n(B) if there are some elements which are in both sets--i.e., in the intersection.

}

MORE DETAIL: The statement can be either true or false, depending on the sets A and B; it is not always true.

The statement n(A U B) = n(A)+n(B) means that the number of elements in A U B is equal to the sum of the number of elements in A and the number of elements in B.

The statement would be true for A = { c, f } and B = { a, g, h} because A U B would be { a, c, f, g, h} so n(A U B) = 5, and n(A) + n(B) = 2 + 3 = 5.

The statement would not be true for A = { c, f, g } and B = { a, g, h} because A U B would be the same as before so n(AUB) = 5, while n(A) + n(B) = 3 + 3 = 6.

The precise condition for which the statement is true is that A and B have nothing in common. In that case n(A U B) = n(A) + n(B). A more precise mathematical way to state this is to say that n(A U B) = n(A) + n(B) if and only if the intersection A ^ B of the two sets is empty. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qQuery 2.3.60 X = {1,3,5}, Y = {1,2,3}. Find (X ^ Y)' and X' U Y'.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(X^Y)' = {1,3}= {2,4,5}

X' U Y' {2,4} U {4,5}

(X^Y)'=X' U Y'

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** X ^ Y = {1,3} so (X ^ Y) ' = {1,3}' = {2, 4, 5}.

(X ' U Y ' ) = {2, 4} U {4, 5} = {2, 4, 5}

The two resulting sets are equal so a reasonable conjecture would be that (X ^ Y)' = X' U Y'. **

STUDENT QUESTION:

Where did the 4 come from?

INSTRUCTOR RESPONSE:

I believe this problem, as stated in the text, indicates that the universal set is {1, 2, 3, 4, 5}.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q2.3.72 A = {3,6,9,12}, B = {6,8}. What is A X B and what is n(A X B)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: (A X B) = {(3,6),(3,8),(6,6),(6,8),(9,6),(9,8),(12,6), (12,8)}

(B X A) = (6,3),(6,6),(6,9),(6,12),(8,3),(8,6),(8,9),(8,12)}

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** (A X B) = {(3,6),(3,8),(6,6),(6,8),(9,6),(9,8),(12,6), (12,8)}

(B X A) = (6,3),(6,6),(6,9),(6,12),(8,3),(8,6),(8,9),(8,12)}

How is n(A x B) related to n(A) and n(B)?

n(S) stands for the number of elements in the set S, i.e., its cardinality.

n(A x B) = n(A) * n(B) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q2.3.84 Shade A U B

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

What's in A and B is shaded.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** everything in A and everything in B would be shaded. The rest of the universal set (the region outside A and B but still in the rectangle) wouldn't be. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery 2.3.100 Shade (A' ^ B) ^ C

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Do not shade A but shade B and C.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** you would have to shade every region that lies outside of A and also inside B and also inside C. This would be the single region in the overlap of B and C but not including any part of A. Another way to put it: the region common to B and C, but not including any of A **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

@&

&#Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the parts of the given solution on which your solution didn't agree, and if necessary asking specific questions (to which I will respond).

&#

*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery 2.3.108. Describe the shading of the set (A ^ B)' U C.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Do not shade what is in A and B overlaping region shade outside of A and B overlapping and shade what is in C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** All of C would be shaded because we have a union with C, which will include all of C.

Every region outside A ^ B would also be shaded. A ^ B is the 'overlap' region where A and B meet, and only this 'overlap' would not be part of (A ^ B) '. The 'large' parts of A and B, as well as everything outside of A and B, would therefore be shaded.

Combining this with the shading of C the only the part of the diagram not shaded would be that part of the 'overlap' of A and B which is not part of C. **

STUDENT QUESTION

I think I understand because the ‘ was outside the ( ) then only the answer to A^B would be prime. And so my answer is

wrong to the extent that the larger regions of A &B would also be shaded, but had it been (AUB)’ no part of either A or B

would have been Shaded?

INSTRUCTOR RESPONSE

Exactly. Very good question, which you answered very well.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q2.3.114 Largest area of A shaded (sets A,B,C). Write a description using A, B, C, subset, union, intersection symbols, ', - for the shaded region.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(B' ^C') ^ A

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Student Answer and Instructor Response:

(B'^C')^A

Instructor Response:

Good. Another alternative would be A - (B U C ), and others are mentioned below.

COMMON ERROR: A ^ (B' U C')

INSTRUCTOR COMMENT: This is close but A ^ (B' U C') would contain all of B ^ C, including a part that's not shaded. A ^ (B U C)' would be one correct answer. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q2.3.114 Largest area of A shaded (sets A,B,C). Write a description using A, B, C, subset, union, intersection symbols, ', - for the shaded region.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(B' ^C') ^ A

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Student Answer and Instructor Response:

(B'^C')^A

Instructor Response:

Good. Another alternative would be A - (B U C ), and others are mentioned below.

COMMON ERROR: A ^ (B' U C')

INSTRUCTOR COMMENT: This is close but A ^ (B' U C') would contain all of B ^ C, including a part that's not shaded. A ^ (B U C)' would be one correct answer. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. Let me know if you have any questions. &#