course Phys201 ~wbٱTՂassignment #007
......!!!!!!!!...................................
13:05:16 Describe the flow diagram you would use for the uniform acceleration situation in which you are given v0, vf, and `dt.
......!!!!!!!!...................................
RESPONSE --> v0, vF, 'dt use the avg Vel and 'dt to determine 'ds. use 'dv and 'dt to determine avg acc. confidence assessment: 2
.................................................
......!!!!!!!!...................................
13:07:38 ** We start with v0, vf and `dt on the first line of the diagram. We use vO and vf to find Vave, indicated by lines from v0 and vf to vAve. Use Vave and 'dt to find 'ds, indicated by lines from vAve and `dt to `ds. Then use `dv and 'dt to find acceleration, indicated by lines from vAve and `dt to a. **
......!!!!!!!!...................................
RESPONSE --> okay self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:08:28 Describe the flow diagram you would use for the uniform acceleration situation in which you are given `dt, a, v0
......!!!!!!!!...................................
RESPONSE --> use 'dv and v0 to determine vF then use the vF determine and v0 to get avg Vel use 'dt and Vave to find 'ds confidence assessment:
.................................................
......!!!!!!!!...................................
13:08:35 ** Student Solution: Using 'dt and a, find 'dv. Using 'dv and v0, find vf. Using vf and vO, find vave. Using 'dt and Vave, find 'ds. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:09:19 Explain in detail how the flow diagram for the situation in which v0, vf and `dt are known gives us the two most fundamental equations of motion.
......!!!!!!!!...................................
RESPONSE --> 'vf-vo = 'dv avg vel = (vf+v0) / 2 avg a= (vf-v0) / 'dt 'dt= vf- v0 = vf=v0 + a 'dt 'ds= (vf+ v0)/2 *' dt 'ds = (vf + v0) / 2 * `dt. confidence assessment: 1
.................................................
......!!!!!!!!...................................
13:09:24 **Student Solution: v0 and vf give you `dv = vf - v0 and vAve = (vf + v0) / 2. `dv is divided by `dt to give accel. So we have a = (vf - v0) / `dt. Rearranging this we have a `dt = vf - v0, which rearranges again to give vf = v0 + a `dt. This is the second equation of motion. vAve is multiplied by `dt to give `ds. So we have `ds = (vf + v0) / 2 * `dt. This is the first equation of motion Acceleration is found by dividing the change in velocity by the change in time. v0 is the starting velocity, if it is from rest it is 0. Change in time is the ending beginning time subtracted by the ending time. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 2
.................................................
......!!!!!!!!...................................
13:11:18 qaExplain in detail how the flow diagram for the situation in which v0, a and `dt are known gives us the third fundamental equations of motion.
......!!!!!!!!...................................
RESPONSE --> 'dv = a 'dt. vf = v0 + 'dv = v0 + a `dt. Avg velocity = (vf + v0) / 2 = (v0 + (v0 + a `dt)) / 2) = v0 + 1/2 a `dt. 'ds = Avg Vel * 'dt = (v0 'dt + 1/2 a 'dt) * 'dt = v0 'dt + 1/2 a 'dt^2. **
......!!!!!!!!...................................
self critique assessment: 2
.................................................
......!!!!!!!!...................................
13:13:02 ** a and `dt give you `dv. `dv and v0 give you vf. v0 and vf give you vAve. vAve and `dt give you `ds. In symbols, `dv = a `dt. Then vf = v0 + `dv = v0 + a `dt. Then vAve = (vf + v0)/2 = (v0 + (v0 + a `dt)) / 2) = v0 + 1/2 a `dt. Then `ds = vAve * `dt = [ v0 `dt + 1/2 a `dt ] * `dt = v0 `dt + 1/2 a `dt^2. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:14:28 Why do we think in terms of seven fundamental quantities while we model uniformly accelerated motion in terms of five?
......!!!!!!!!...................................
RESPONSE --> Because there are different ways to answer a question depending on the information and the facts that are given in the probelm. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:15:36 ** ONE WAY OF PUTTING IT: The four equations are expressed in terms of five fundamental quantities, v0, vf, a, `dt and `ds. However to think in terms of meanings we have to be able to think not only in terms of these quantities but also in terms of average velocity vAve and change in velocity `dv, which aren't among these five quantities. Without the ideas of average velocity and change in velocity we might be able to use the equations and get some correct answers but we'll never understand motion. ANOTHER WAY: The four equations of unif accelerated motion are expressed in terms of five fundamental quantities, v0, vf, a, `dt and `ds. The idea here is that to intuitively understand uniformly accelerated motion, we must often think in terms of average velocity vAve and change in velocity `dv as well as the five quantities involved in the four fundamental equations. one important point is that we can use the five quantities without any real conceptual understanding; to reason things out rather than plugging just numbers into equations we need the concepts of average velocity and change in velocity, which also help us make sense of the equations. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:16:37 Accelerating down an incline through a given distance vs. accelerating for a given time Why does a given change in initial velocity result in the same change in final velocity when we accelerated down a constant incline for the same time, but not when we accelerated down the same incline for a constant distance?
......!!!!!!!!...................................
RESPONSE --> If it is constant then it will be uniform or the same. If you start with a faster velocity then there will be less time for acceleration. confidence assessment: 1
.................................................
......!!!!!!!!...................................
13:16:41 ** If we accelerate down a constant incline our rate of change of velocity is the same whatever our initial velocity. So the change in velocity is determined only by how long we spend coasting on the incline. Greater `dt, greater `dv. If you travel the same distance but start with a greater speed there is less time for the acceleration to have its effect and therefore the change in velocity will be less. You might also think back to that introductory problem set about the car on the incline and the lamppost. Greater initial velocity results in greater average velocity and hence less time on the incline, which gives less time for the car to accelerate. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
"
course Phys201 Again i apologize for not sending this all at once.
......!!!!!!!!...................................
15:38:46 `q001. The accepted value of the acceleration of gravity is approximately 980 cm/s^2 or 9.8 m/s^2. This will be the acceleration, accurate at most places within 1 cm/s^2, of any object which falls freely, that is without the interference of any other force, near the surface of the Earth. If you were to step off of a table and were to fall 1 meter without hitting anything, you would very nearly approximate a freely falling object. How fast would you be traveling when you reached the ground?
......!!!!!!!!...................................
RESPONSE --> 9.8 m/s^2 / 2 = 4.4 m/s^2 confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:39:05 You would have an initial vertical velocity of 0, and would accelerate at 9.8 m/s^2 in the same direction as your 1 meter vertical displacement. You would also have a slight horizontal velocity (you don't step off of a table without moving a bit in the horizontal direction, and you would very likely maintain a small horizontal velocity as you fell), but this would have no effect on your vertical motion. So your vertical velocity is a uniform acceleration with v0 = 0, `ds = 1 meter and a = 9.8 m/s^2. The equation vf^2 = v0^2 + 2 a `ds contains the three known variables and can therefore be used to find the desired final velocity. We obtain vf = +- `sqrt( v0^2 + 2 a `ds) = +- `sqrt ( 0^2 + 2 * 9.8 m/s^2 * 1 m)= +- `sqrt ( 19.6 m^2 / s^2) = +- 4.4 m/s, approx. Since the acceleration and displacement were in the direction chosen as positive, we conclude that the final velocity will be in the same direction and we choose the solution vf = +4.4 m/s.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
15:40:11 `q002. If you jump vertically upward, leaving the ground with a vertical velocity of 3 m/s, how high will you be at the highest point of your jump? Note that as soon as you leave the ground, you are under the influence of only the gravitational force. All the forces that you exerted with your legs and other parts of your body to attain the 3 m/s velocity have done their work and are no longer acting on you. All you have to show for it is that 3 m/s velocity. So as soon as you leave the ground, you begin experiencing an acceleration of 9.8 m/s^2 in the downward direction. Now again, how high will you be at the highest point of your jump?
......!!!!!!!!...................................
RESPONSE --> 3 m / s / 9.8 m / s ^2 = .35 m confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:43:12 From the instant the leave the ground until the instant you reach your highest point, you have an acceleration of 9.8 m/s^2 in the downward direction. Since you are jumping upward, and since we can take our choice of whether upward or downward is the positive direction, we choose the upward direction as positive. You might have chosen the downward direction, and we will see in a moment how you should have proceeded after doing so. For now, using the upward direction as positive, we see that you have an initial velocity of v0 = + 3 m/s and an acceleration of a = -9.8 m/s^2. In order to use any of the equations of motion, each of which involves four variables, you should have the values of three variables. So far you only have two, v0 and a. {}What other variable might you know? If you think about it, you will notice that when objects tossed in the air reach their highest point they stop for an instant before falling back down. That is precisely what will happen to you. At the highest point your velocity will be 0. Since the highest point is the last point we are considering, we see that for your motion from the ground to the highest point, vf = 0. Therefore we are modeling a uniform acceleration situation with v0 = +3 m/s, a = -9.8 m/s^2 and vf = 0. We wish to find the displacement `ds. Unfortunately none of the equations of uniformly accelerated motion contain the four variables v0, a, vf and `ds. This situation can be easily reasoned out from an understanding of the basic quantities. We can find the change in velocity to be -3 meters/second; since the acceleration is equal to the change in velocity divided by the time interval we quickly determine that the time interval is equal to the change in velocity divided by the acceleration, which is `dt = -3 m/s / (-9.8 m/s^2) = .3 sec, approx.; then we multiply the .3 second time interval by the 1.5 m/s average velocity to obtain `ds = .45 meters. However if we wish to use the equations, we can begin with the equation vf = v0 + a `dt and solve to find `dt = (vf - v0) / a = (0 - 3 m/s) / (-9.8 m/s^2) = .3 sec. We can then use the equation `ds = (vf + v0) / 2 * `dt = (3 m/s + 0 m/s) / 2 * .3 sec = .45 m. This solution closely parallels and is completely equivalent to the direct reasoning process, and shows that and initial velocity of 3 meters/second should carry a jumper to a vertical height of .45 meters, approximately 18 inches. This is a fairly average vertical jump. If the negative direction had been chosen as positive then we would have a = +9.8 m/s^2, v0 = -3 m/s^2 (v0 is be in the direction opposite the acceleration so if acceleration is positive then initial velocity is negative) and again vf = 0 m/s (0 m/s is the same whether going up or down). The steps of the solution will be the same and the same result will be obtained, except that `ds will be -.45 m--a negative displacement, but where the positive direction is down. That is we move .45 m in the direction opposite to positive, meaning we move .45 meters upward.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
15:43:54 `q003. If you roll a ball along a horizontal table so that it rolls off the edge of the table at a velocity of 3 m/s, the ball will continue traveling in the horizontal direction without changing its velocity appreciably, and at the same time will fall to the floor in the same time as it would had it been simply dropped from the edge of the table. If the vertical distance from the edge of the table to the floor is .9 meters, then how far will the ball travel in the horizontal direction as it falls?
......!!!!!!!!...................................
RESPONSE --> 'ds = vO 'dt + .5a 'dt = squareroot of 2'ds/a= .42s 'ds = .9 m a = 9.8 m/s^2 vo=0 3 m/s * .42 s = 1.26 m confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:45:49 A ball dropped from rest at a height of .9 meters will fall to the ground with a uniform vertical acceleration of 9.8 m/s^2 downward. Selecting the downward direction as positive we have `ds = .9 meters, a = 9.8 m/s^2 and v0 = 0. Using the equation `ds = v0 `dt + .5 a `dt^2 we see that v0 = 0 simplifies the equation to `ds = .5 a `dt^2, so `dt = `sqrt( 2 `ds / a) = `sqrt(2 * .9 m / (9.8 m/s^2) ) = .42 sec, approx.. Since the ball rolls off the edge of the table with only a horizontal velocity, its initial vertical velocity is still zero and it still falls to the floor in .42 seconds. Since its horizontal velocity remains at 3 m/s, it travels through a displacement of 3 m/s * .42 sec = 1.26 meters in this time.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
"
course Phys201 ~wbٱTՂassignment #007
......!!!!!!!!...................................
13:05:16 Describe the flow diagram you would use for the uniform acceleration situation in which you are given v0, vf, and `dt.
......!!!!!!!!...................................
RESPONSE --> v0, vF, 'dt use the avg Vel and 'dt to determine 'ds. use 'dv and 'dt to determine avg acc. confidence assessment: 2
.................................................
......!!!!!!!!...................................
13:07:38 ** We start with v0, vf and `dt on the first line of the diagram. We use vO and vf to find Vave, indicated by lines from v0 and vf to vAve. Use Vave and 'dt to find 'ds, indicated by lines from vAve and `dt to `ds. Then use `dv and 'dt to find acceleration, indicated by lines from vAve and `dt to a. **
......!!!!!!!!...................................
RESPONSE --> okay self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:08:28 Describe the flow diagram you would use for the uniform acceleration situation in which you are given `dt, a, v0
......!!!!!!!!...................................
RESPONSE --> use 'dv and v0 to determine vF then use the vF determine and v0 to get avg Vel use 'dt and Vave to find 'ds confidence assessment:
.................................................
......!!!!!!!!...................................
13:08:35 ** Student Solution: Using 'dt and a, find 'dv. Using 'dv and v0, find vf. Using vf and vO, find vave. Using 'dt and Vave, find 'ds. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:09:19 Explain in detail how the flow diagram for the situation in which v0, vf and `dt are known gives us the two most fundamental equations of motion.
......!!!!!!!!...................................
RESPONSE --> 'vf-vo = 'dv avg vel = (vf+v0) / 2 avg a= (vf-v0) / 'dt 'dt= vf- v0 = vf=v0 + a 'dt 'ds= (vf+ v0)/2 *' dt 'ds = (vf + v0) / 2 * `dt. confidence assessment: 1
.................................................
......!!!!!!!!...................................
13:09:24 **Student Solution: v0 and vf give you `dv = vf - v0 and vAve = (vf + v0) / 2. `dv is divided by `dt to give accel. So we have a = (vf - v0) / `dt. Rearranging this we have a `dt = vf - v0, which rearranges again to give vf = v0 + a `dt. This is the second equation of motion. vAve is multiplied by `dt to give `ds. So we have `ds = (vf + v0) / 2 * `dt. This is the first equation of motion Acceleration is found by dividing the change in velocity by the change in time. v0 is the starting velocity, if it is from rest it is 0. Change in time is the ending beginning time subtracted by the ending time. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 2
.................................................
......!!!!!!!!...................................
13:11:18 qaExplain in detail how the flow diagram for the situation in which v0, a and `dt are known gives us the third fundamental equations of motion.
......!!!!!!!!...................................
RESPONSE --> 'dv = a 'dt. vf = v0 + 'dv = v0 + a `dt. Avg velocity = (vf + v0) / 2 = (v0 + (v0 + a `dt)) / 2) = v0 + 1/2 a `dt. 'ds = Avg Vel * 'dt = (v0 'dt + 1/2 a 'dt) * 'dt = v0 'dt + 1/2 a 'dt^2. **
......!!!!!!!!...................................
self critique assessment: 2
.................................................
......!!!!!!!!...................................
13:13:02 ** a and `dt give you `dv. `dv and v0 give you vf. v0 and vf give you vAve. vAve and `dt give you `ds. In symbols, `dv = a `dt. Then vf = v0 + `dv = v0 + a `dt. Then vAve = (vf + v0)/2 = (v0 + (v0 + a `dt)) / 2) = v0 + 1/2 a `dt. Then `ds = vAve * `dt = [ v0 `dt + 1/2 a `dt ] * `dt = v0 `dt + 1/2 a `dt^2. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:14:28 Why do we think in terms of seven fundamental quantities while we model uniformly accelerated motion in terms of five?
......!!!!!!!!...................................
RESPONSE --> Because there are different ways to answer a question depending on the information and the facts that are given in the probelm. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:15:36 ** ONE WAY OF PUTTING IT: The four equations are expressed in terms of five fundamental quantities, v0, vf, a, `dt and `ds. However to think in terms of meanings we have to be able to think not only in terms of these quantities but also in terms of average velocity vAve and change in velocity `dv, which aren't among these five quantities. Without the ideas of average velocity and change in velocity we might be able to use the equations and get some correct answers but we'll never understand motion. ANOTHER WAY: The four equations of unif accelerated motion are expressed in terms of five fundamental quantities, v0, vf, a, `dt and `ds. The idea here is that to intuitively understand uniformly accelerated motion, we must often think in terms of average velocity vAve and change in velocity `dv as well as the five quantities involved in the four fundamental equations. one important point is that we can use the five quantities without any real conceptual understanding; to reason things out rather than plugging just numbers into equations we need the concepts of average velocity and change in velocity, which also help us make sense of the equations. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:16:37 Accelerating down an incline through a given distance vs. accelerating for a given time Why does a given change in initial velocity result in the same change in final velocity when we accelerated down a constant incline for the same time, but not when we accelerated down the same incline for a constant distance?
......!!!!!!!!...................................
RESPONSE --> If it is constant then it will be uniform or the same. If you start with a faster velocity then there will be less time for acceleration. confidence assessment: 1
.................................................
......!!!!!!!!...................................
13:16:41 ** If we accelerate down a constant incline our rate of change of velocity is the same whatever our initial velocity. So the change in velocity is determined only by how long we spend coasting on the incline. Greater `dt, greater `dv. If you travel the same distance but start with a greater speed there is less time for the acceleration to have its effect and therefore the change in velocity will be less. You might also think back to that introductory problem set about the car on the incline and the lamppost. Greater initial velocity results in greater average velocity and hence less time on the incline, which gives less time for the car to accelerate. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
"
course Phys201 Again i apologize for not sending this all at once.
......!!!!!!!!...................................
15:38:46 `q001. The accepted value of the acceleration of gravity is approximately 980 cm/s^2 or 9.8 m/s^2. This will be the acceleration, accurate at most places within 1 cm/s^2, of any object which falls freely, that is without the interference of any other force, near the surface of the Earth. If you were to step off of a table and were to fall 1 meter without hitting anything, you would very nearly approximate a freely falling object. How fast would you be traveling when you reached the ground?
......!!!!!!!!...................................
RESPONSE --> 9.8 m/s^2 / 2 = 4.4 m/s^2 confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:39:05 You would have an initial vertical velocity of 0, and would accelerate at 9.8 m/s^2 in the same direction as your 1 meter vertical displacement. You would also have a slight horizontal velocity (you don't step off of a table without moving a bit in the horizontal direction, and you would very likely maintain a small horizontal velocity as you fell), but this would have no effect on your vertical motion. So your vertical velocity is a uniform acceleration with v0 = 0, `ds = 1 meter and a = 9.8 m/s^2. The equation vf^2 = v0^2 + 2 a `ds contains the three known variables and can therefore be used to find the desired final velocity. We obtain vf = +- `sqrt( v0^2 + 2 a `ds) = +- `sqrt ( 0^2 + 2 * 9.8 m/s^2 * 1 m)= +- `sqrt ( 19.6 m^2 / s^2) = +- 4.4 m/s, approx. Since the acceleration and displacement were in the direction chosen as positive, we conclude that the final velocity will be in the same direction and we choose the solution vf = +4.4 m/s.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
15:40:11 `q002. If you jump vertically upward, leaving the ground with a vertical velocity of 3 m/s, how high will you be at the highest point of your jump? Note that as soon as you leave the ground, you are under the influence of only the gravitational force. All the forces that you exerted with your legs and other parts of your body to attain the 3 m/s velocity have done their work and are no longer acting on you. All you have to show for it is that 3 m/s velocity. So as soon as you leave the ground, you begin experiencing an acceleration of 9.8 m/s^2 in the downward direction. Now again, how high will you be at the highest point of your jump?
......!!!!!!!!...................................
RESPONSE --> 3 m / s / 9.8 m / s ^2 = .35 m confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:43:12 From the instant the leave the ground until the instant you reach your highest point, you have an acceleration of 9.8 m/s^2 in the downward direction. Since you are jumping upward, and since we can take our choice of whether upward or downward is the positive direction, we choose the upward direction as positive. You might have chosen the downward direction, and we will see in a moment how you should have proceeded after doing so. For now, using the upward direction as positive, we see that you have an initial velocity of v0 = + 3 m/s and an acceleration of a = -9.8 m/s^2. In order to use any of the equations of motion, each of which involves four variables, you should have the values of three variables. So far you only have two, v0 and a. {}What other variable might you know? If you think about it, you will notice that when objects tossed in the air reach their highest point they stop for an instant before falling back down. That is precisely what will happen to you. At the highest point your velocity will be 0. Since the highest point is the last point we are considering, we see that for your motion from the ground to the highest point, vf = 0. Therefore we are modeling a uniform acceleration situation with v0 = +3 m/s, a = -9.8 m/s^2 and vf = 0. We wish to find the displacement `ds. Unfortunately none of the equations of uniformly accelerated motion contain the four variables v0, a, vf and `ds. This situation can be easily reasoned out from an understanding of the basic quantities. We can find the change in velocity to be -3 meters/second; since the acceleration is equal to the change in velocity divided by the time interval we quickly determine that the time interval is equal to the change in velocity divided by the acceleration, which is `dt = -3 m/s / (-9.8 m/s^2) = .3 sec, approx.; then we multiply the .3 second time interval by the 1.5 m/s average velocity to obtain `ds = .45 meters. However if we wish to use the equations, we can begin with the equation vf = v0 + a `dt and solve to find `dt = (vf - v0) / a = (0 - 3 m/s) / (-9.8 m/s^2) = .3 sec. We can then use the equation `ds = (vf + v0) / 2 * `dt = (3 m/s + 0 m/s) / 2 * .3 sec = .45 m. This solution closely parallels and is completely equivalent to the direct reasoning process, and shows that and initial velocity of 3 meters/second should carry a jumper to a vertical height of .45 meters, approximately 18 inches. This is a fairly average vertical jump. If the negative direction had been chosen as positive then we would have a = +9.8 m/s^2, v0 = -3 m/s^2 (v0 is be in the direction opposite the acceleration so if acceleration is positive then initial velocity is negative) and again vf = 0 m/s (0 m/s is the same whether going up or down). The steps of the solution will be the same and the same result will be obtained, except that `ds will be -.45 m--a negative displacement, but where the positive direction is down. That is we move .45 m in the direction opposite to positive, meaning we move .45 meters upward.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
15:43:54 `q003. If you roll a ball along a horizontal table so that it rolls off the edge of the table at a velocity of 3 m/s, the ball will continue traveling in the horizontal direction without changing its velocity appreciably, and at the same time will fall to the floor in the same time as it would had it been simply dropped from the edge of the table. If the vertical distance from the edge of the table to the floor is .9 meters, then how far will the ball travel in the horizontal direction as it falls?
......!!!!!!!!...................................
RESPONSE --> 'ds = vO 'dt + .5a 'dt = squareroot of 2'ds/a= .42s 'ds = .9 m a = 9.8 m/s^2 vo=0 3 m/s * .42 s = 1.26 m confidence assessment: 3
.................................................
......!!!!!!!!...................................
15:45:49 A ball dropped from rest at a height of .9 meters will fall to the ground with a uniform vertical acceleration of 9.8 m/s^2 downward. Selecting the downward direction as positive we have `ds = .9 meters, a = 9.8 m/s^2 and v0 = 0. Using the equation `ds = v0 `dt + .5 a `dt^2 we see that v0 = 0 simplifies the equation to `ds = .5 a `dt^2, so `dt = `sqrt( 2 `ds / a) = `sqrt(2 * .9 m / (9.8 m/s^2) ) = .42 sec, approx.. Since the ball rolls off the edge of the table with only a horizontal velocity, its initial vertical velocity is still zero and it still falls to the floor in .42 seconds. Since its horizontal velocity remains at 3 m/s, it travels through a displacement of 3 m/s * .42 sec = 1.26 meters in this time.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
"