Query 2

#$&*

course Mth 174

Question: Section 6.1, Problem 5 5th edition Problem 14 4th edition Problem 5 [[6.1.5 (previously 6.1 #12)]]

f '(x) =1 for x on the interval (0,2), -1 on (2,3), 2 on (3,4), -2 on (4,6), 1 on (6,7)

f(3) = 0

What was your value for the integral of f '?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

0. This answer is reached by adding the area under the curve for each value given 0-2 is 2, 2-3 is -1, 3-4 is 2, 4-6 is -4, 6-7 is 1.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

the change in f from x=0 to x=2 is 2 (area beneath line segment from x=0 to x=1), then from x=2 to x=3 is -1, then from x=3 to x=4 is +2, then from x=4 to x=6 is -4, then from x=6 to x=7 is +1.

If f(3) = 0 then f(4) = 0 + 2 = 2, f(6) = 2 - 4 = -2 and f(7) = f(6) + 1 = -1.

Working back from x=3, f(2) = 0 - (-1) = 1 and f(0) = 1 - 2 = -1.

The integral is the sum of the changes in f ' which is 2 - 1 + 2 - 4 + 1 = 0.

Alternatively since f(0) = -1 and f(7) = -1 the integral is the difference f(7) - f(0) = -1 - (-1) = 0.

Let me know if you disagree with or don't understand any of this and I will explain further. Let me know specifically what you do and don't understand.

**

**

Alternative solution:

Two principles will solve this problem for you:

1. The definite integral of f' between two points gives you the change in f between those points.

2. The definite integral of f' between two points is represented by the area beneath the graph of f' between the two points, provided area is understood as positive when the graph is above the x axis and negative when the graph is below.

We apply these two principles to determine the change in f over each of the given intervals.

Answer the following questions:

What is the area beneath the graph of f' between x = 0 and x = 2?

What is the area beneath the graph of f' between x = 3 and x = 4?

What is the area beneath the graph of f' between x = 4 and x = 6?

What is the area beneath the graph of f' between x = 6 and x = 7?

What is the change in the value of f between x = 3 and x = 4? Since f(3) = 0, what therefore is the value of f at x = 4?

Now that you know the value of f at x = 4, what is the change in f between x = 4 and x = 6, and what therefore is the value of f at x = 6?

Using similar reasoning, what is the value of f at x = 7?

Then using similar reasoning, see if you can determine the value of f at x = 2 and at x = 0.**

STUDENT QUESTION: I did not understand how to obtain the value of f(0), but I found that f(7)

was 10 by adding all the integrals together

INSTRUCTOR RESPONSE:

The total area is indeed 10, so you're very nearly correct; however the integral is like a 'signed' area--areas beneath the x axis make negative contributions to the integral--and you added the 'absolute' areas

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: (Note that no problem reference is given, meaning that this question applies to the current problem. Any question that is not preceded by a problem number is likely to be in reference to the current problem.)

Describe your graph of f(x), indicating where it is increasing and decreasing and where it is concave up, where it is straight and where it is concave down.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It is increasing: 0-2, 3-4, and 6-7

It is decreasing: 2-3 and 4-6

Not concave at all, slope is straight on all values

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graph of f(x) is

increasing, with slope 1, on the interval (0,2), since f'(x) = 1 on that interval,

decreasing, with slope -1, on the interval (2,3), where f'(x) = -1,

increasing, with slope +2, on the interval (3,4), where f'(x) = +2,

decreasing, with slope -2, on the interval (4,6), where f'(x) = -2, and

increasing, with slope +1, on the interval (6,7), where f'(x) = +1.

The concavity on every interval is zero, since the slope is constant on every interval.

Since f(3) = 0, f(4) = 2 (slope 2 from x=3 to x=4), f(6) = -2 (slope -2 from x = 4 to x = 6), f(7) = -1 (slope +1 from x=6 to x=7).

Also, since slope is -1 from x=2 to x=3, f(2) = +1; and similar reasoning shows that f(0) = -1. **

** The definite integral of f'(x) from x=0 to x=7 is therefore f(7) - f(0) = -1 - (-1) = 0. **

** Basic principles:

1. The slope of the graph of f(x) is f'(x). So the slope of your f graph will be the value taken by your f' graph.

2. Note that if the slope of the f graph is constant for an interval that means that the graph is a straight line on the interval.

Using these principles answer the following questions:

What is the slope of the f graph between x = 0 and x = 2?

What is the slope of the f graph between x = 3 and x = 4?

What is the slope of the f graph between x = 4 and x = 6?

What is the slope of the f graph between x = 6 and x = 7?

Given that f(3) = 0 and using the value of the slope of the f graph between x = 3 and x = 4, describe the f graph between these two points.

Using similar information describe the graph for each of the other given intervals.

Also answer the following:

What would have to be true of the f' graph for the f graph to be concave up? Same question for concave down. **

.........................................

18:37:09

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

Query 2

#$&*

course Mth 174

Question: Section 6.1, Problem 5 5th edition Problem 14 4th edition Problem 5 [[6.1.5 (previously 6.1 #12)]]

f '(x) =1 for x on the interval (0,2), -1 on (2,3), 2 on (3,4), -2 on (4,6), 1 on (6,7)

f(3) = 0

What was your value for the integral of f '?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

0. This answer is reached by adding the area under the curve for each value given 0-2 is 2, 2-3 is –1, 3-4 is 2, 4-6 is –4, 6-7 is 1.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

the change in f from x=0 to x=2 is 2 (area beneath line segment from x=0 to x=1), then from x=2 to x=3 is -1, then from x=3 to x=4 is +2, then from x=4 to x=6 is -4, then from x=6 to x=7 is +1.

If f(3) = 0 then f(4) = 0 + 2 = 2, f(6) = 2 - 4 = -2 and f(7) = f(6) + 1 = -1.

Working back from x=3, f(2) = 0 - (-1) = 1 and f(0) = 1 - 2 = -1.

The integral is the sum of the changes in f ' which is 2 - 1 + 2 - 4 + 1 = 0.

Alternatively since f(0) = -1 and f(7) = -1 the integral is the difference f(7) - f(0) = -1 - (-1) = 0.

Let me know if you disagree with or don't understand any of this and I will explain further. Let me know specifically what you do and don't understand.

**

**

Alternative solution:

Two principles will solve this problem for you:

1. The definite integral of f' between two points gives you the change in f between those points.

2. The definite integral of f' between two points is represented by the area beneath the graph of f' between the two points, provided area is understood as positive when the graph is above the x axis and negative when the graph is below.

We apply these two principles to determine the change in f over each of the given intervals.

Answer the following questions:

What is the area beneath the graph of f' between x = 0 and x = 2?

What is the area beneath the graph of f' between x = 3 and x = 4?

What is the area beneath the graph of f' between x = 4 and x = 6?

What is the area beneath the graph of f' between x = 6 and x = 7?

What is the change in the value of f between x = 3 and x = 4? Since f(3) = 0, what therefore is the value of f at x = 4?

Now that you know the value of f at x = 4, what is the change in f between x = 4 and x = 6, and what therefore is the value of f at x = 6?

Using similar reasoning, what is the value of f at x = 7?

Then using similar reasoning, see if you can determine the value of f at x = 2 and at x = 0.**

STUDENT QUESTION: I did not understand how to obtain the value of f(0), but I found that f(7)

was 10 by adding all the integrals together

INSTRUCTOR RESPONSE:

The total area is indeed 10, so you're very nearly correct; however the integral is like a 'signed' area--areas beneath the x axis make negative contributions to the integral--and you added the 'absolute' areas

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: (Note that no problem reference is given, meaning that this question applies to the current problem. Any question that is not preceded by a problem number is likely to be in reference to the current problem.)

Describe your graph of f(x), indicating where it is increasing and decreasing and where it is concave up, where it is straight and where it is concave down.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It is increasing: 0-2, 3-4, and 6-7

It is decreasing: 2-3 and 4-6

Not concave at all, slope is straight on all values

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graph of f(x) is

increasing, with slope 1, on the interval (0,2), since f'(x) = 1 on that interval,

decreasing, with slope -1, on the interval (2,3), where f'(x) = -1,

increasing, with slope +2, on the interval (3,4), where f'(x) = +2,

decreasing, with slope -2, on the interval (4,6), where f'(x) = -2, and

increasing, with slope +1, on the interval (6,7), where f'(x) = +1.

The concavity on every interval is zero, since the slope is constant on every interval.

Since f(3) = 0, f(4) = 2 (slope 2 from x=3 to x=4), f(6) = -2 (slope -2 from x = 4 to x = 6), f(7) = -1 (slope +1 from x=6 to x=7).

Also, since slope is -1 from x=2 to x=3, f(2) = +1; and similar reasoning shows that f(0) = -1. **

** The definite integral of f'(x) from x=0 to x=7 is therefore f(7) - f(0) = -1 - (-1) = 0. **

** Basic principles:

1. The slope of the graph of f(x) is f'(x). So the slope of your f graph will be the value taken by your f' graph.

2. Note that if the slope of the f graph is constant for an interval that means that the graph is a straight line on the interval.

Using these principles answer the following questions:

What is the slope of the f graph between x = 0 and x = 2?

What is the slope of the f graph between x = 3 and x = 4?

What is the slope of the f graph between x = 4 and x = 6?

What is the slope of the f graph between x = 6 and x = 7?

Given that f(3) = 0 and using the value of the slope of the f graph between x = 3 and x = 4, describe the f graph between these two points.

Using similar information describe the graph for each of the other given intervals.

Also answer the following:

What would have to be true of the f' graph for the f graph to be concave up? Same question for concave down. **

.........................................

18:37:09

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: Was the graph of f(x) continuous?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes, at no point did x not have a definite value, there are no jumps in the graph without values.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** A function f(x) is continuous at x = a if the limit of the f(x), as x approaches a, exists and is equal to f(a).

Is this condition fulfilled at every point of the f(x) graph? **

.........................................

18:37:15

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question:

How can the graph of f(x) be continuous when the graph of f ' (x) is not continuous?

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

F’ could have jumps whereas f would not.

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

18:38:11

** f' is the slope of the f graph; f' has 'jumps', which imply sudden changes in the slope of the f graph, causing the graph of f to have a jagged shape as opposed to a smooth shape. However this does not cause the graph of f itself to have discontinuous 'jumps'. **

** f ' determines the slope of f; the slope of f can change instantaneously without causing a 'jump' in the values of f. Continuity is, roughly speaking, a lack of 'jumps' in a graph. **

** Basically, if f ' is finite and does exceed some fixed bound over a small interval about x = a, then the change `dx in x has to be small. More specifically:

f(x) is continuous at x = a if the limit of f(x) as x -> a is equal to f(a).

If f ‘ (x) is bounded in some vicinity of x = a, then this condition must be satisfied. Specifically if for | x – a | < epsilon we have | f ‘ | < L, it follows that on this same interval | f(x) – f(a) | < epsilon * L. So as x -> a, f(x) -> f(a) and the function f is continuous at a.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Did not take into account that f’ is the slope of f

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question:

What does the graph of f(x) look like over an interval where f ' (x) is constant?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It should be a straight line because if f’ is constant then f should be constant as well.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If f ' is constant then the slope of the f(x) graph is constant, so the graph of f(x) must be linear **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: Section 6.1, Problem 10: The graph of outflow vs. time is concave up Jan 1993 -Sept, peaks ub October,

then decreases somewhat thru Jan 1994; the inflow starts lower than the outflow, peaks in May, then decreases until January; inflow is equal to outflow around the middle of March and again in late July.

**** When was the quantity of water greatest and when least? Describe in terms of the behavior of the two curves.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The quantity of water was greatest around May where the inflow was much larger than the outflow, meaning more water was coming in than was being released. The quantity was lowest around October when the outflow dwarfed the inflow.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Between any two dates the corresponding outflow is represented by the area under the outflow curve, and the inflow by the area under the inflow curve.

When inflow is greater than outflow the quantity of water in the reservoir will be increasing and when the outflow is greater than the inflow quantity of water will be decreasing.

We see that the quantity is therefore decreasing from January 93 through sometime in late February, increasing from late February through the beginning of July, then again decreasing through the end of the year.

The reservoir will reach a relative maximum at the beginning of July, when the outflow rate overtakes the inflow rate.

The amount of water lost between January and late February is represented by the difference between the area under the outflow curve and the area under the inflow curve. This area corresponds to the area between the two graphs. The amount of water gained between late February and early July is similarly represented by the area between the two curves. The latter area is clearly greater than the former, so the quantity of water in the reservoir will be greater in early July than on Jan 1.

The loss between July 93 and Jan 94, represented by the area between the two graphs over this period, is greater than the gain between late February and early July, so the minimum quantity will occur in Jan 94.

The rate at which the water quantity is changing is the difference between outflow and inflow rates. Specifically the net rate at which water quantity is changing is

net rate = inflow rate - outflow rate.

This quantity is represented by the difference between the vertical coordinate so the graphs, and is maximized around late April or early May, when the inflow rate most greatly exceeds the outflow rate. The net rate is minimized around early October, when the outflow rate most greatly exceeds the inflow rate. At this point the rate of decrease will be maximized. **

** When inflow is > outflow the amount of water in the reservoir will be increasing. If outflow is < inflow the amount of water will be decreasing.

Over what time interval(s) is the amount of water increasing?

Over time interval(s) is the amount of water decreasing? **

.........................................

......!!!!!!!!...................................

**** When was the quantity of water increasing fastest, and when most slowly? Describe in terms of the behavior of the two curves.

......!!!!!!!!...................................

18:47:03

The curve increases most between Jan and Apr and it decreases most between

July and October

** What aspect of which graph gives you the rate at which water is flowing into the reservoir?

What aspect of which graph gives you the rate at which water is flowing out of the reservoir?

What has to be true of the two graphs in order for the amount of water in the reservoir to the increasing at an increasing rate?

What has to be true of the two graphs in order for the amount of water in the reservoir to the increasing at a decreasing rate?

What has to be true of the two graphs in order for the amount of water in the reservoir to the decreasing at an increasing rate?

What has to be true of the two graphs in order for the amount of water in the reservoir to the decreasing at a decreasing rate? **

.........................................

18:47:04

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

Section 6.2, Problem 5 [[6.2.5 (previously 6.2 #26)]] antiderivative of f(x) = x^2, F(0) = 0

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

F(x) = 1/3 x^3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** An antiderivative of x^2 is x^3/3.

The general antiderivative of x^2 is F(x) = x^3/3 + c, where c can be anything. There are infinitely many possible specific antiderivative.

However only one of them satisfied F(0) = 0. We have

F(0) = 0 so 0^3/3 + c = 0, or just c = 0.

The antiderivative that satisfies the conditions of this problem is therefore F(x) = x^3/3 + 0, or just F(x) = x^3/3. **

.........................................

18:47:58

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question:

Section 6.2, Problem 8 [[(previously 6.2 #56)]] indef integral of t `sqrt(t) + 1 / (t `sqrt(t)) **** What did you get for the indefinite integral?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

= (1/2t^2 ` t^1.5 + t / 1/2t^2 ` t^1.5) + C

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The function can be written t^(3/2) + t^(-3/2). Both are power functions of the form t^n. Antiderivative is

2/5 * t^(5/2) - 2 t^(-1/2) + c or

2/5 t^(5/2) - 2 / `sqrt(t) + c. **

.........................................

11:39:51

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I still don’t really understand this one based off of the answer.

2/5 * t^(5/2) - 2 t^(-1/2) + c

the derivative of that first section would be 2t^2 but the above says that the function should be written as t^ (3/2). I simply don’t see how those are related. Any help would be appreciated

@& You appear to have fallen into the common error

intgral(f * g) = integral( f ) * integral ( g ).

This is clearlly not true since the derivative of the right-hand side would be f * integral(g) + integral(f) * g, not integral(f * g).

The integral of t sqrt(t) is therefore not t^2 / 2 * 2/3 t^1.5.

The point is that the given function can be simplified to the form

t^(3/2) + t^(-3/2),

the sum of two power functions, and that the two antiderivatives are multiples of the 5/2 and the -1/2 power, respectively.*@

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question:

6.2.9 (previously 6.2 #50) definite integral of sin(t) + cos(t), 0 to `pi/4

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Lost on this one

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** An antiderivative is -cos(t) + sin(t), as you can see by taking the derivative.

Evaluating this expression at `pi/4 gives -`sqrt(2)/2 + `sqrt(2)/2 = 0. Evaluating at 0 gives -1 + 0 or -1. The antiderivative is therefore 0 - (-1) = 1. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

So for this one you need to find the antiderivative and then find values are a certain value of pi? I’m not really understanding this one

@& The question asks for the definite integral of sin(t) + cos(t) on the interval from 0 to pi / 4.

To integrate a function over an interval you find the change in an antiderivative of that function.

An antiderivative of sin(t) + cos(t) is -cos(t) + sin(t).

At t = 0 this has value -1, and at t = pi/4 it has value 0. So the change in the antiderivative function is 0 - (-1) = 1.

In general symbols the fundamental theorem is generally written as

integra( f(x) dx, x from a to b) = F(b) - F(a),

where F(x) is an antiderivative of f(x).

In words, F(b) - F(a) is the change in the antiderivative function over the x interval [a, b].*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

Why doesn't it matter which antiderivative you use?

.......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The constant C can be switched out for any value in any antiderivative equation

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** General antiderivative is -cos(t) + sin(t) + c, where c can be any number. You would probably use c = 0, but you could use any fixed value of c.

Since c is the same at both limits of the integral, it subtracts out and has no effect on the value of the definite integral. **

.......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

6.2.13 (previously 6.2 #60) The average of v(x) = 6/x^2 on the interval [1,c} is 1. Find the value of c.

.......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Antiderivative:

-6/x

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

An antiderivative of 6 / x^2 is F(x) = -6 / x.

The definite integral is equal to the product of the average value and the length of the interval. In this case average value is 1 and the interval from x = 1 to x = c has length c – 1. So the definite integral must be 1 * ( c – 1).

Evaluating between 1 and c and using the above fact that the result must be 1 we get

F(c) - F(1) = -6/c- (-6/1) = c - 1 so that

-6/c+6=c - 1. We solve for c, first getting all terms on one side:

c – 7 + 6/c = 0. Multiplying both sides by c to get

c^2 – 7 c + 6 = 0. Either be factoring or the quadratic formula we get

c = 6 or c = 1.

If c = 1 the interval has length 0 and the definite integral is not defined. This leaves the solution

c= 6.

STUDENT QUESTION

I had some trouble with this problem

I got -6/x for antideri. So I thought that at F(1) = -6 and F(1.5) = -4

Then I got really confused for some reason used the logic

F(b)- F(a) = -4 – (-6) = 2 when divided by 2 = 1.

I see what you did but not so sure about the logic.

INSTRUCTOR RESPONSE

Note that the length of the interval between x = 1 and x = 1.5 is .5. The integral is 2, but the average value between x=1 and x=1.5 is (integral) / (length of interval) = 2 / .5 = 4, not 2.

The average value of the integral must be 1.

The integral of a function over an interval is equal to its average value over that interval, multiplied by the length of the

interval:

· ave value = definite integral / length of interval

It follows immediately that

· definite integral = ave value * length of interval

In this case the interval has length (c - 1) and the average value must be 1.

The integral must therefore be 1 * (c - 1).

The integral is from x = 1 to x = c. So

The integral of 6/x^2 from x = 1 to x = c must equal 1 * (c - 1).

The integral of 6/x^2 from x = 1 to x = c is -6 / c - (-6 / 1) = 6 - 6/c.

Thus 6 - 6/c = 1 * (c - 1).

We solve to get c, and we obtain c = 6.

..........................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

@& You got an antiderivative.

You don't appear to have gotten a value for c.

You should at least give a self-critique rating.

If you don't understand all aspects of the given solution you should also include a detailed self-critique.

&#Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the parts of the given solution on which your solution didn't agree, and if necessary asking specific questions (to which I will respond).

&#

*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question:

6.2.14 (previously 6.2 #44) What is the indefinite integral of e^(5+x) + e^(5x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Antiderivative of e^(5+x):

Derivative of (5+x) * e^(5+x)

(5+x)’ = 1, 1*e^(5+x) = e^(5+x)

Anitderivative of e^(5x):

Derivative of (5x) * e^(5x)

5x’ = 5

to get e^(5x) as the antiderivative from this you would have to use 1/5e^(5x)

the derivative of that would then be:

(5x)’ * 1/5e^(5x) which is e^(5x)

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The derivative of e^(5+x) is, by the Chain Rule, (5+x)' * e^(5+x) = 1 * e^(5 + x) = e^(5 + x) so this function is its own antiderivative.

The derivative of e^(5x) is (5x) ' * e^(5x) = 5 * e^(5x). So to get an antiderivative of e^(5x) you would have to use 1/5 e^(5x), whose derivative is e^(5x). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

@& See my notes in response to your questions, and let me know if there is something you still do not understand.*@