assignment 16

course phy 231

㑽Põ€÷wÌ”Í~Õóç²ÓHþ¨J´Ýassignment #016

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

016. Projectiles

Physics II

02-22-2008

......!!!!!!!!...................................

19:29:30

`q001. Note that this assignment contains 4 questions.

. How long does it take for an object dropped from rest to fall 2 meters under the influence of gravity?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment: 0

.................................................

......!!!!!!!!...................................

19:30:28

The object has initial velocity 0, acceleration 9.8 meters/second^2, and displacement 2 meters. We can easily solve this problem using the equations of motion.

Using the equation `ds = v0 `dt + .5 a `dt^2 we note first that since initial velocity is zero the term v0 `dt will be zero and can be dropped from the equation, leaving `ds = .5 a `dt^2. This equation is then easily solved for `dt, obtaining

`dt = `sqrt(2 *`ds / a ) = `sqrt(2 * 2 meters / (9.8 m/s^2) ) = .64 second.

......!!!!!!!!...................................

RESPONSE -->

was unsure of how to approach the equation with just one figure. but now i relaized about using the motion equations for this one.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

19:33:42

`q002. While an object dropped from rest falls 2 meters under the influence of gravity, another object moves along a level surface at 12 meters/second. How far does the second object move during the time required for the first object to fall?

......!!!!!!!!...................................

RESPONSE -->

0.64 sec * 12m/s = 7.68 m

confidence assessment: 3

.................................................

......!!!!!!!!...................................

19:33:50

As we have seen in the preceding problem, the first object requires .64 second to fall. The second object will during this time move a distance of 12 meters/second * .64 second = 8 meters, approximately.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

......!!!!!!!!...................................

20:02:30

`q003. An object rolls off the edge of a tabletop and falls to the floor. At the instant it leaves the edge of the table is moving at 6 meters/second, and the distance from the tabletop to the floor is 1.5 meters.

Since if we neglect air resistance there is zero net force in the horizontal direction, the horizontal velocity of the object will remain unchanged.

Since the gravitational force acts in the vertical direction, motion in the vertical direction will undergo the acceleration of gravity. Since at the instant the object leaves the tabletop its motion is entirely in the horizontal direction, the vertical motion will also be characterized by an initial velocity of zero.

How far will the object therefore travel in the horizontal direction before it strikes the floor?

......!!!!!!!!...................................

RESPONSE -->

motiuion = ds = v0 dt + .5 a dt ^2

2 * 1.5 m / 9.8 m/s^2 =0.5 sec

displacement of the table moving is 6 m/s

6 m/s * 0.54 = 3.24 m/s

confidence assessment: 2

.................................................

......!!!!!!!!...................................

20:03:53

We analyze the vertical motion first. The vertical motion is characterized by initial velocity zero, acceleration 9.8 meters/second^2 and displacement 1.5 meters. Since the initial vertical velocity is zero the equation `ds = v0 `dt + .5 a `dt^2 becomes `ds = .5 a `dt^2, which is easily solved for `dt to obtain `dt = `sqrt( 2 `ds / a) = `sqrt( 2 * 1.5 m / (9.8 m/s^2) ) = .54 sec, approx., so the object falls for about .54 seconds.

The horizontal motion will therefore last .54 seconds. Since the initial 6 meter/second velocity is in the horizontal direction, and since the horizontal velocity is unchanging, the object will travel `ds = 6 m/s * .54 s = 3.2 m, approximately.

......!!!!!!!!...................................

RESPONSE -->

got the units mixed up. failed to mention that the horizontal velocity would not change. so it would remain 6m/s, which is the initial velocity

self critique assessment: 2

.................................................

......!!!!!!!!...................................

20:12:02

`q004. An object whose initial velocity is in the horizontal direction descends through a distance of 4 meters before it strikes the ground. It travels 32 meters in the horizontal direction during this time. What was its initial horizontal velocity? What are its final horizontal and vertical velocities?

......!!!!!!!!...................................

RESPONSE -->

all the problems seem to use the same formula. so 2 * 4 meteres / 9.8 m/ s ^2= 0.9 sec

0.9 is the time for the vertial direction.

vAVE= distance of 32 meters over the time of 0.9 sec. = 35.5 sec as the horizotnal direction

calculating the velocity would be 9 m/s

confidence assessment: 3

.................................................

......!!!!!!!!...................................

20:12:10

We analyze the vertical motion first. The vertical motion is characterized by initial velocity zero, acceleration 9.8 meters/second^2 and displacement 4 meters. Since the initial vertical velocity is zero the equation `ds = v0 `dt + .5 a `dt^2 becomes `ds = .5 a `dt^2, which is easily solved for `dt to obtain `dt = `sqrt( 2 `ds / a) = `sqrt( 2 * 4 m / (9.8 m/s^2) ) = .9 sec, approx., so the object falls for about .9 seconds.

The horizontal displacement during this .9 second fall is 32 meters, so the average horizontal velocity is 32 meters/(.9 second) = 35 meters/second, approximately.

The final vertical velocity is easily calculated. The vertical velocity changes at a rate of 9.8 meters/second^2 for approximately .9 seconds, so the change in vertical velocity is `dv = 9.8 m/s^2 * .9 sec = 8.8 m/s. Since the initial vertical velocity was zero, final vertical velocity must be 8.8 meters/second in the downward direction. The final horizontal velocity is 35 meters/second, since the horizontal velocity remains unchanging until impact.

......!!!!!!!!...................................

RESPONSE -->

ok

self critique assessment: 3

.................................................

You did a good job on this assignments, with good answers on many, good attempts on all, and good self-critiques where they were needed.