course mth 152 Question: `q001.
.............................................
Given Solution: When choosing 4 objects out of 12, there are 12 choices for the first, 11 choices for the second, 10 choices for the third and 9 choices for the fourth object. If the order matters there are therefore 12 * 11 * 10 * 9 possible outcomes. If the order doesn't matter, then we have to ask in how many different orders any given collection of 4 objects could be chosen. Given any 4 objects, there are 4 choices for the first, 3 choices for the second, 2 choices for the third and 1 choice for the fourth. There are thus 4 * 3 * 2 * 1 orders in which a given set of 4 objects could be chosen. We therefore have 12 * 11 * 10 * 9 / ( 4 * 3 * 2 * 1) possible outcomes when order doesn't matter. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating #$&*: ********************************************* Question: `q002. If order does not matter, then how many ways are there to choose 5 members of a team from 23 potential players? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 23*22*21*20*19/5*4*3*2*1= 4037880/120=33,649 possibilities.
.............................................
Given Solution: If order did matter then there would be 23 * 22 * 21 * 20 * 19 ways choose the five members. However order does not matter, so we must divide this number by the 5 * 4 * 3 * 2 * 1 ways in which any given set of five individuals can be chosen. We therefore have 23 * 22 * 21 * 20 * 19 / ( 5 * 4 * 3 * 2 * 1) possible 5-member teams. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating #$&*: ********************************************* Question: `q003. In how many ways can we line up 5 different books on a shelf? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 5*4*3*2*1=120 possibilities.
.............................................
Given Solution: It should be clear that there are 5 * 4 * 3 * 2 * 1 ways, since there are 5 choices for the first book, 4 for the second, etc.. If we multiply these numbers out we get 5 * 4 * 3 * 2 * 1 = 120. It might be a little bit surprising that there should be 120 ways to order only 5 objects. It’s probably even more surprising that if we double the number of objects to 10, there are over 3 million ways to order them (you should be able to verify this easily enough). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating #$&*: ********************************************* Question: `q004. The expression 5 * 4 * 3 * 2 * 1 is often written as 5 ! , read 'five factorial'. More generally if n stands for any number, then n ! stands for the number of ways in which n distinct objects could be lined up. Find 6 ! , 7 ! and 10 ! . YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 6*5*4*3*2*1=720 7*6*5*4*3*2*1= 5040 10*9*8*7*6*5*4*3*2*1= 3,628,800
.............................................
Given Solution: 6 ! = 6 * 5 * 4 * 3 * 2 * 1 = 720. 7 ! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040. 10 ! = 3,628,800. These numbers grow at an astonishing rate. The last result here shows is that there are over 3 million ways to arrange 10 people in a line. The rapid growth of these results like in part explain the use of the ! symbol (the exclamation point) to designate factorials. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating #$&*: ********************************************* Question: `q005. What do we get if we simplify the expression (10 ! / 6 !) ? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 10*9*8*7*6*5*4*3*2*1/6*5*4*3*2*1=5040
.............................................
Given Solution: 10 ! / 6 ! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 / ( 6 * 5 * 4 * 3 * 2 * 1). We can simplify this by rewriting it as 10 * 9 * 8 * 7 * (6 * 5 * 4 * 3 * 2 * 1) / ( 6 * 5 * 4 * 3 * 2 * 1) = 10 * 9 * 8 * 7. We see that the 6 * 5 * 4 * 3 * 2 * 1 in the numerator matches the same expression in the denominator, so when divided these expressions give us 1 and we end up with just 10 * 9 * 8 * 7 * 1 = 10 * 9 * 8 * 7. Note that this is just the number of ways in which 4 objects can be chosen, in order, from a collection of 10 objects. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating #$&*: ********************************************* Question: `q006. We saw above that there are 23 * 22 * 21 * 20 * 19 ways to choose 5 individuals, in order, from 23 potential members. How could we express this number as a quotient of two factorials? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 23!/18!
.............................................
Given Solution: If we divide 23 ! by 18 ! , the numbers from 18 down to 1 will occur in both the numerator and denominator and when we divide we will be left with just the numbers from 23 down to 19. Thus 23 * 22 * 21 * 20 * 19 = 23 ! / 18 !. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating #$&*: