Query 7

#$&*

course Phy 232

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

007. `query 6

*********************************************

Question: query introset How do we find the change in pressure due to diameter change given the original velocity of the flow and pipe diameter and final diameter?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

From the notes given, (d1/d2)^2=v2/v1

Just solve for v2

Then plug into Bernoulli’s equation.

.5rhov1^2 +rhogh+p1=.5rhov2^2 +rhogh+p2

In this case the height is the same so those terms cancel out solve for p2-p1

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The ratio of velocities is the inverse ratio of cross-sectional areas.

Cross-sectional area is proportional to square of diameter. So velocity is inversely proportional to cross-sectional area:

v2 / v1 = (A1 / A2) = (d1 / d2)^2 so

v2 = (d1/d2)^2 * v1.

Since h presumably remains constant we have

P1 + .5 rho v1^2 = P2 + .5 rho v2^2 so

(P2 - P1) = 0.5 *rho (v1^2 - v2^2) . **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: query video experiment terminal velocity of sphere in fluid. What is the evidence from this experiment that the drag force increases with velocity?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

When the velocity was increased in water, there reached a certain point where it was very difficult to increase the velocity of the object anymore. It could be concluded from this that the drag force was very strong apposing motion.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** When weights were repetitively added the velocity of the sphere repetitively increased. As the velocities started to aproach 0.1254 m/sec the added weights had less and less effect on increasing the velocity. We conclude that as the velocity increased so did the drag force of the water. **

Your Self-Critique:ok

Your Self-Critique Rating:

*********************************************

Question: query univ phy problem 12.93 / 14.91 11th edition14.85 (14.89 10th edition) half-area constriction then open to outflow at dist h1 below reservoir level, tube from lower reservoir into constricted area, same fluid in both. Find ht h2 to which fluid in lower tube rises.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

I really have no idea how to approach this problem. I understand that it must involve the use of Bernoulli’s equation, but other than that I really don’t know where to start. This system is really confusing to me.

@&

Can you identify points 1, 2 and 3 as indicated in the given solution?

What can you say about altitude, pressure and velocity at each of these points?

You're welcome to submit a copy of this problem and the given solution, with your best answers. We might have to go back and forth a couple of times on this, but if you give me as much information as possible about your thinking we can nail it down fairly easily (except for the part I mention in the solution, where the book's statement of the problem doesn't seem consistent with reality).

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The fluid exits the narrowed part of the tube at atmospheric pressure. The widened part at the end of the tube is irrelevant--it won't be filled with fluid. So Bernoulli's Equation will tell you that the fluid velocity in this part is vExit such that .5 rho vExit^2 = rho g h1.

Now compare three points: point 1, in the narrowed tube; point 2 at the top of the fluid in the lower tube; and point 3 at the level of the fluid surface in the lower container.

At point 1 the pressure is atmospheric and velocity is vExit. Pressure is atmospheric because there is no pressure loss within the tube, since friction and viscosity are both assumed negligible.

At point 2 fluid velocity is zero. Since there is a path through the atmosphere between the narrowed tube and this point there is no net rho g h contribution to Bernoulli's equation. So we have .5 rho v1^2 + P1 = .5 rho v2^2 + P2. P1 is atmospheric and v1 is vExit from above, while v2 = 0 so P2 = atmospheric pressure + .5 rho vExit^2 = atmospheric pressure + rho g h1.

Now comparing point 2 with point 3 we see that there is a difference h in the fluid altitude, with velocity 0 at both points and atmospheric pressure at point 3. Thus P2 + rho g h2 = P3 + rho g h3, or (atmospheric pressure + rho g h1) + rho g h2 = atmospheric pressure + rho g h3. Thus rho g (h3 - h2) = rho g h1 and h3 - h2, which is the height of the fluid in the lower tube, is just equal to h1.

If we assume that somehow the fluid manages to expand on escaping the narrowed tube so that it fills the once-again-widened tube, and exits with vExit as above, then the velocity in the narrowed tube will be 2 * vExit. This leads to the conclusion that pressure change from small to large tube is .5 rho (2 vExit)^2 - .5 rho vExit^2 = .5 rho (3 vExit^2). Since pressure is atmospheric in the large tube, pressure in the small tube is atmospheric pressure + 3 ( .5 rho vExit^2). If we use this pressure for point 1 and follow the steps given above we conclude that h3 - h2, the height of the fluid column in the lower tube, is 3 h1.

This is the book's answer. Again I don't have the problem in front of me and I might have missed something, but the idea of the fluid expanding to refill the larger pipe doesn't seem consistent with the behavior of liquids, which are pretty much incompressible at ordinary pressures. However note that I am sometimes wrong when I disagree with the textbook's solution. **

" "If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

006. `query 5

*********************************************

Question: query introset change in pressure from velocity change.

Explain how to get the change in fluid pressure given the initial and final fluid velocities, assuming constant altitude

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

.5rhov1^2+p1+rhogh1=.5rhov2^2 +p2+rhogh2

rhogh1, and rohgh2 are constant

.5rov1^2-.5rohv2^2=p2-p1

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Bernoulli's Equation can be written

• 1/2 rho v1^2 + rho g y1 + P1 = 1/2 rho v2^2 + rho g y2 + P2

If altitude is constant then y1 = y2, so that rho g y1 is the same as rho g y2. Subtracting this quantity from both sides, these terms disappear, leaving us

• 1/2 rho v1^2 + P1 = 1/2 rho v2^2 + P2.

The difference in pressure is P2 - P1. If we subtract P1 from both sides, as well as 1/2 rho v2^2, we get

• 1/2 rho v1^2 - 1/2 rho v2^2 = P2 - P1.

Thus

• change in pressure = P2 - P1 = 1/2 rho ( v1^2 - v2^2 ).

Caution: (v1^2 - v2^2) is not the same as (v1 - v2)^2. Convince yourself of that by just picking two unequal and nonzero numbers for v1 and v2, and evaluating both sides.

ALTERNATIVE FORMULATION

Assuming constant rho, Bernoulli's Equation can be written

1/2 rho `d(v^2) + rho g `dy + `dP = 0.

If altitude is constant, then `dy = 0 so that

1/2 rho `d(v^2) + `dP = 0

so that

`dP = - 1/2 rho `d(v^2).

Caution: `d(v^2) means change in v^2, not the square of the change in v. So `d(v^2) = v2^2 - v1^2, not (v2 - v1)^2.

STUDENT SOLUTION: The equation for this situation is Bernoulli's Equation, which as you note is a modified KE+PE equation. Considering ideal conditions with no losses

(rho*gy)+(0.5*rho*v^2)+(P) = 0

g= acceleration due to gravity

y=altitude

rho=density of fluid

v=velocity

P= pressure

Constant altitude causes the first term to go to 0 and disappear.

(0.5*rho*v^2)+(P) = constant

So here is where we are:

Since the altitude h is constant, the two quantities .5 rho v^2 and P are the only things that can change. The sum 1/2 `rho v^2 + P must remain constant. Since fluid velocity v changes, it therefore follows that P must change by a quantity equal and opposite to the change in 1/2 `rho v^2.

MORE FORMAL SOLUTION:

More formally we could write

• 1/2 `rho v1^2 + P1 = 1/2 `rho v2^2 + P2

and rearrange to see that the change in pressure, P2 - P1, must be equal to the change 1/2 `rho v2^2 - 1/2 `rho v1^2 in .5 rho v^2:

• P2 - P1 = 1/2 `rho v2^2 - 1/2 `rho v1^2 = 1/2 rho (v2^2 - v1^2). **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: query billiard experiment

Do you think that on the average there is a significant difference between the total KE in the x direction and that in the y direction? Support your answer.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

On average I don’t believe that there is a significant difference between total KE in the X and Y direction because molecules will tend to move toward a state of disorder which means that on average the KE in the x and y direction will be the same even if fluctuations occur one way or the other.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** In almost every case the average of 30 KE readings in the x and in the y direction differs between the two directions by less than 10% of either KE. This difference is not statistically significant, so we conclude that the total KE is statistically the same in bot directions. **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: What do you think are the average velocities of the 'red' and the 'blue' particles and what do you think it is about the 'blue' particle that makes is so?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The red particle on average has a faster velocity than the blue particle does. This is because the blue particle has a greater mass, so it does not move as quickly when collisions occur due to the conservation of momentum theorem.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Student answer with good analogy: I did not actually measure the velocities. the red were much faster. I would assume that the blue particle has much more mass a high velocity impact from the other particles made very little change in the blue particles velocity. Similar to a bycycle running into a Mack Truck.

INSTRUCTOR NOTE: : It turns out that average kinetic energies of red and blue particles are equal, but the greater mass of the blue particle implies that it needs less v to get the same KE (which is .5 mv^2) **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: What do you think is the most likely velocity of the 'red' particle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The red particle seemed to have an average velocity within about 4 or 5 as measured by the program, so that would be my best guess.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If you watch the velocity display you will see that the red particles seem to average somewhere around 4 or 5 **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: If the simulation had 100 particles, how long do you think you would have to watch the simulation before a screen with all the particles on the left-hand side of the screen would occur?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The probability would be .5^100 which is on in 2^100 which would be extremely unlikely.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: ok

** STUDENT ANSWER: Considering the random motion at various angles of impact.It would likely be a very rare event.

INSTRUCTOR COMMENT

This question requires a little fundamental probability but isn't too difficult to understand:

If particle position is regarded as random the probability of a particle being on one given side of the screen is 1/2. The probability of 2 particles both being on a given side is 1/2 * 1/2. For 3 particles the probability is 1/2 * 1/2 * 1/2 = 1/8. For 100 particlles the probability is 1 / 2^100, meaning that you would expect to see this phenomenon once in 2^100 screens. If you saw 10 screens per second this would take about 4 * 10^21 years, or just about a trillion times the age of the Earth.

In practical terms, then, you just wouldn't expect to see it, ever. **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: What do you think the graphs at the right of the screen might represent?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

The graphs at the right seemed to represent the kinetic energies and the other just seemed to keep track of the numbers of each speed recorded.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** One graph is a histogram showing the relative occurrences of different velocities. Highest and lowest velocities are least likely, midrange tending toward the low end most likely. Another shows the same thing but for energies rather than velocities. **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: prin phy and gen phy problem 10.36 15 cm radius duct replentishes air in 9.2 m x 5.0 m x 4.5 m room every 16 minutes; how fast is air flowing in the duct?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The volume of the room is 9.2 m * 5.0 m * 4.5 m = 210 m^3.

This air is replentished every 16 minutes, or at a rate of 210 m^3 / (16 min * 60 sec/min) = 210 m^3 / (960 sec) = .22 m^3 / second.

The cross-sectional area of the duct is pi r^2 = pi * (.15 m)^2 = .071 m^2.

The speed of the air flow and the velocity of the air flow are related by

rate of volume flow = cross-sectional area * speed of flow, so

speed of flow = rate of volume flow / cross-sectional area = .22 m^3 / s / (.071 m^2) = 3.1 m/s, approx.

Your Self-Critique:

`

Your Self-Critique Rating:

*********************************************

Question: prin phy and gen phy problem 10.40 What gauge pressure is necessary to maintain a firehose stream at an altitude of 15 m?

.......................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** We use Bernoulli's equation. Between the water in the hose before it narrows to the nozzle and the 15m altitude there is a vertical change in position of 15 m.

Between the water in the hose before it narrows to the nozzle and the 15 m altitude there is a vertical change in position of 15 m.

Assuming the water doesn't move all that fast before the nozzle narrows the flow, and noting that the water at the top of the stream has finally stopped moving for an instant before falling back down, we see that we know the two vertical positions and the velocities (both zero, or very nearly so) at the two points.

All that is left is to calculate the pressure difference. The pressure of the water after its exit is simply atmospheric pressure, so it is fairly straightforward to calculate the pressure inside the hose using Bernoulli's equation.

Assuming negligible velocity inside the hose we have

change in rho g h from inside the hose to 15 m height: `d(rho g h) = 1000 kg/m^3 * 9.8 m/s^2 * 15 m = 147,000 N / m^2, approx.

Noting that the velocity term .5 `rho v^2 is zero at both points, the change in pressure is `dP = - `d(rho g h) = -147,000 N/m^2.

Since the pressure at the 15 m height is atmospheric, the pressure inside the hose must be 147,000 N/m^2 higher than atmospheric. **

Your Self-Critique:

Your Self-Critique Rating:

*********************************************

Question: Gen phy: Assuming that the water in the hose is moving much more slowly than the exiting water, so that the water in the hose is essentially moving at 0 velocity, what quantity is constant between the inside of the hose and the top of the stream? what term therefore cancels out of Bernoulli's equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Velocity is 0 at top and bottom; pressure at top is atmospheric, and if pressure in the hose was the same the water wouldn't experience any net force and would therefore remain in the hose **

Your Self-Critique:

Your Self-Critique Rating:

*********************************************

Question: query gen phy problem 10.43 net force on 240m^2 roof from 35 m/s wind.

What is the net force on the roof?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** air with density around 1.29 kg/m^3 moves with one velocity above the roof and essentially of 0 velocity below the roof. Thus there is a difference between the two sides of Bernoulli's equation in the quantity 1/2 `rho v^2. At the density of air `rho g h isn't going to amount to anything significant between the inside and outside of the roof. So the difference in pressure is equal and opposite to the change in 1/2 `rho v^2.

On one side v = 0, on the other v = 35 m/s, so the difference in .5 rho v^2 from inside to out is

`d(.5 rho v^2) = 0.5(1.29kg/m^3)*(35m/s)^2 - 0 = 790 N/m^2.

The difference in the altitude term is, as mentioned above, negligible so the difference in pressure from inside to out is

`dP = - `d(.5 rho v^2) = -790 N/m^2.

The associated force is 790 N/m^2 * 240 m^2 = 190,000 N, approx. **

Your Self-Critique:

Your Self-Critique Rating:

*********************************************

Question: gen phy which term 'cancels out' of Bernoulli's equation and why?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** because of the small density of air and the small change in y, `rho g y exhibits practically no change. **

Your Self-Critique:

Your Self-Critique Rating:

*********************************************

Question: univ phy problem 12.77 / 14.75 (11th edition 14.67): prove that if weight in water if f w then density of gold is 1 / (1-f). Meaning as f -> 0, 1, infinity. Weight of gold in water if 12.9 N in air. What if nearly all lead and 12.9 N in air?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

fw + buoyant force = w

buoyant force = (density of water)(volume of crown)(g)

w=(density of crown)(volume of crown)(g)

fw+dw(vw)g-w=0

fw-w=(dw)vc(g)

w(f-1)=dw(vc)g

dc(vc)(g)(f-1)=dw(vc)g

dc(f-1)/dw=1

dc/dw=1(f-1)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The tension in the rope supporting the crown in water is T = f w.

Tension and buoyant force are equal and opposite to the force of gravity so

T + dw * vol = w or f * dg * vol + dw * vol = dg * vol.

Dividing through by vol we have

f * dg + dw = dg, which we solve for dg to obtain

dg = dw / (1 - f).

Relative density is density as a proportion of density of water, so

relative density is 1 / (1-f).

For gold relative density is 19.3 so we have

1 / (1-f) = 19.3, which we solve for f to obtain

f = 18.3 / 19.3.

The weight of the 12.9 N gold crown in water will thus be

T = f w = 18.3 / 19.3 * 12.9 N = 12.2 N.

STUDENT SOLUTION:

After drawing a free body diagram we can see that these equations are true:

Sum of Fy =m*ay ,

T+B-w=0,

T=fw,

B=(density of water)(Volume of crown)(gravity).

Then

fw+(density of water)(Volume of crown)(gravity)-w=0.

(1-f)w=(density of water)(Volume of crown)(gravity).

Use

w==(density of crown)(Volume of crown)(gravity).

(1-f)(density of crown)(Volume of crown)(gravity) =(density of water)(Volume of crown)(gravity).

Thus, (density of crown)/(density of water)=1/(1-f). **

Your Self-Critique:ok

Your Self-Critique Rating:ok

*********************************************

Question: univ phy What are the meanings of the limits as f approaches 0 and 1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Taking the assumption that the density of crown divided by density of water=1(1-f)

As f approaches zero the value of dc/dw=1 which means that the density of the crown and the density of water will be equal meaning that the crown would float. As f approaches one, the function would be some sort of asymptote, so I don’t fully understand what that could mean.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** GOOD STUDENT ANSWER: f-> 0 gives (density of crown)/(density of water) = 1 and T=0. If the density of the crown equals the density of the water, the crown just floats, fully submerged, and the tension should be zero. When f-> 1, density of crown >> density of water and T=w. If density of crown >> density of water then B is negligible relative to the weight w of the crown and T should equal w. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: univ phy What are the meanings of the limits as f approaches 0 and 1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Taking the assumption that the density of crown divided by density of water=1(1-f)

As f approaches zero the value of dc/dw=1 which means that the density of the crown and the density of water will be equal meaning that the crown would float. As f approaches one, the function would be some sort of asymptote, so I don’t fully understand what that could mean.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** GOOD STUDENT ANSWER: f-> 0 gives (density of crown)/(density of water) = 1 and T=0. If the density of the crown equals the density of the water, the crown just floats, fully submerged, and the tension should be zero. When f-> 1, density of crown >> density of water and T=w. If density of crown >> density of water then B is negligible relative to the weight w of the crown and T should equal w. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: univ phy What are the meanings of the limits as f approaches 0 and 1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Taking the assumption that the density of crown divided by density of water=1(1-f)

As f approaches zero the value of dc/dw=1 which means that the density of the crown and the density of water will be equal meaning that the crown would float. As f approaches one, the function would be some sort of asymptote, so I don’t fully understand what that could mean.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** GOOD STUDENT ANSWER: f-> 0 gives (density of crown)/(density of water) = 1 and T=0. If the density of the crown equals the density of the water, the crown just floats, fully submerged, and the tension should be zero. When f-> 1, density of crown >> density of water and T=w. If density of crown >> density of water then B is negligible relative to the weight w of the crown and T should equal w. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#This looks good. See my notes. Let me know if you have any questions. &#