query 24

#$&*

course Phy 232

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

024.

*********************************************

Question: `qIn your own words explain the meaning of the electric field.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

An electric field is a space containing a variety of charges that interact with one another to create an electrical force.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aSTUDENT RESPONSE AND INSTRUCTOR COMMENT: electric field is the concentration of the electrical force

** That's a pretty good way to put it. Very specifically electric field measures the magnitude and direction of the electrical force, per unit of charge, that would be experienced by a charge placed at a given point. **

STUDENT COMMENT:

Faraday explain that it reached out from the charge, so would that be a concentration? It seems to me that the concentration would be near the center of the charge and the field around it would be more like radiation extending outward weakening with distance.

INSTRUCTOR RESPONSE

That's a good, and very important, intuitive conception of nature of the electric field around a point charge.

However the meaning of the field is the force per unit charge. If you know the magnitude and direction of the field and the charge, you can find the magnitude and direction of the force on that charge.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: `qExplain how we calculate the magnitude and direction of the electric field at a given point of the x-y plane due to a given point charge at the origin.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The magnitude of the charge is found by taking the equation F=q1*q2k/r^2 .

To find the direction of the charge, simple trig can be used to determine the angle, however, if the charges are opposite 180 degrees needs to be added to the angle.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The magnitude of the force on a test charge Q is F = k q1 * Q / r^2, where q1 is the charge at the origin.

The electric field is therefore F / Q = k q1 / r^2. The direction is the direction of the force experienced by a positive test charge.

The electric field is therefore directly away from the origin (if q1 is positive) or directly toward the origin (if q1 is negative).

The direction of the electric field is in the direction of the displacement vector from the origin to the point if q1 is positive, and opposite to this direction if q1 is negative.

To find the direction of this displacement vector we find arctan(y / x), adding 180 deg if x is negative. If q1 is positive then this is the direction of the field. If q1 is negative then the direction of the field is opposite this direction, 180 degrees more or less than the calculated angle. **

STUDENT QUESTION

Why is it just Q and not Q2?

INSTRUCTOR RESPONSE

q1 is a charge that's actually present. Q is a 'test charge' that really isn't there. We calculate the effect q1 has on this point by calculating what the force would be if a charge Q was placed at the point in question.

This situation can and will be expanded to a number of actual charges, e.g., q1, q2, ..., qn, at specific points. If we want to find the field at some point, we imagine a 'test charge' Q at that point and figure out the force exerted on it by all the actual charges q1, q2, ..., qn.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: `qQuery Principles of Physics and General Physics problem 16.15 charges 6 microC on diagonal corners, -6 microC on other diagonal corners of 1 m square; force on each.

What is the magnitude and direction of the force on the positive charge at the lower left-hand corner?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The charges which lie 1 meter apart are unlike and therefore exert attractive forces; these forces are each .324 Newtons. This is calculated using Coulomb's Law:F = 9 * 10^9 N m^2/C^2 * ( 6 * 10^-6 C) * ( 6 * 10^-6 C) / ( 1 m)^2 = 324 * 10^-3 N = .324 N.

Charges across a diagonal are like and separated by `sqrt(2) meters = 1.414 meters, approx, and exert repulsive forces of .162 Newtons. This repulsive force is calculated using Coulomb's Law: F = 9 * 10^9 N m^2/C^2 * ( 6 * 10^-6 C) * ( 6* 10^-6 C) / ( 1.414 m)^2 = 162 * 10^-3 N = .162 N.

The charge at the lower left-hand corner therefore experiences a force of .324 Newtons to the right, a force of .324 Newtons straight upward and a force of .162 Newtons at 45 deg down and to the left (at angle 225 deg with respect to the standard positive x axis, which we take as directed toward the right).

This latter force has components Fy = .162 N sin(225 deg) = -.115 N, approx, and Fx = .162 N cos(225 deg) = -.115 N.

The total force in the x direction is therefore -.115 N + .324 N = .21 N, approx; the total force in the y direction is -.115 N + .324 N = .21 N, approx.

Thus the net force has magnitude `sqrt( (.21 N)^2 + (.21 N)^2) = .29 N at an angle of tan^-1( .21 N / .21 N) = tan^-1(1) = 45 deg.

The magnitude and direction of the force on the negative charge at the lower right-hand corner is obtained by a similar analysis, which would show that this charge experiences forces of .324 N to the left, .324 N straight up, and .162 N down and to the right. The net force is found by standard vector methods to be about .29 N up and to the left. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery university physics 21.66 / 21.72 11th edition 21.68 (22.52 10th edition) 5 nC at the origin, -2 nC at (4 cm, 0).

If 6 nC are placed at (4cm, 3cm), what are the components of the resulting force?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The charges are placed in a triangular pattern with the 6nC charge at the top.

The force acting on the 6nC due to the 5nC charge would be

9 * 10^9 N m^2 / C^2 (5*10^-9C)(6*10^-9C)/(0.05m)^2=0.000108N

This has a force of both and X and Y since it is due to the hypotenuse distance of the triangle.

The x component would be 0.04/0.05 * (0.000108N) =0.000086N

The y component would be 0.03/0.05 *(0.000108N)= 0.000065N

9 * 10^9 N m^2 / C^2(2*10^-9C)(6*10^-9)/(0.03m)^2=0.00012N

This is in the negative y direction since the charges attract one another so it is really

-0.00012N

The resulting force would therefore have a magnitude equal to squrt((0.00086N)^2+ (-0.000055N)^2) = 0.00086N

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The -2 nC charge lies 3 cm above the 6 nC charge, so it exerts force 9 * 10^9 N m^2 / C^2 * (-2 * 10^-9 C) ( 6 * 10^-9 C) / (.03 m)^2 = .00012 N. The force between the two charges is a force of attraction, so the direction of the force on the 6 nC charge is the positive y direction.

The 5 nC charge lies at distance 4 cm from the 6 nC charge, so it exerts force 9 * 10^9 N m^2 / C^2 * (6 * 10^-9 C) ( 5 * 10^-9 C) / (.04 m)^2 = .00017 N, approx... The charges repel, so this force is clearly in the positive x direction.

The resultant force is therefore about sqrt( (.00011 N)^2 + (.00017 N)^2) = .0002 N.

The direction of the force is in the first quadrant, at angle arcTan(y component / x component) = arcTan(.00017 N / (.00011 N)) = 57 degrees.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I don’t believe that this solution is correct. The way that the solution is set up is assuming that the 5nC charge is directly in line with the 6nC charge which is not the case of the problem. The distance can’t be 4cm between the 5nC and 6nC charge because the distance is the hypotenuse of a triangle with sides 3 and 4 which would be 5. The way the solution is set up puts the 5nC charge at 0,4 when the problem states that this charge is at the origin.

Also I think that an attractive force would be pulling in the negative y direction not the positive direction as stated. Is this not correct?

------------------------------------------------

Self-critique Rating:3

@&

You are correct that the given solution was incorrect. Your solution was more nearly correct; you left a 0 out of the .000086 N x component in the last step, but I don't see any other errors in your solution. You did leave off the angle of the resultant.

The -2 nC charge lies 3 cm above the 6 nC charge, so it exerts force 9 * 10^9 N m^2 / C^2 * (-2 * 10^-9 C) ( 6 * 10^-9 C) / (.03 m)^2 = .00012 N. The force between the two charges is a force of attraction, so the direction of the force on the 6 nC charge is the negative y direction. The vector force is thus -.00012 N * `j.

The 5 nC charge lies at distance 4 cm from the 6 nC charge, so it exerts force 9 * 10^9 N m^2 / C^2 * (6 * 10^-9 C) ( 5 * 10^-9 C) / (.05 m)^2 = .000108 N, approx... The charges repel, so this force acts in the direction of the vector 4 `i + 3 `j representing the displacement from the origin to the point (4 cm, 3 cm). The unit vector in this direction is easily seen to be 4/5 `i + 3/5 `j = .8 `i + .6 `j.

It follows that the force vector is .000108 N ( 4/5 `i + 3/5 `j) = .000086 N * `i + .000065 N * `j.

The resultant force is therefore the sum of these two vectors, which is about .000086 N * `i - .000055 N * `j.

This vector has magnitude sqrt( (.000086 N)^2 + (-.000055 N)^2 ) = .00011 N, approx., and angle arcTan(-.000055 N / (.000086 N) ) = -33 degrees, approx., or 360 deg - 33 deg = 327 deg.

*@

*********************************************

Question: `qQuery univ phy 21.78 / 21.80 11th edition 21.76 (10th edition 22.60) quadrupole (q at (0,a), (0, -a), -2q at origin).

For y > a what is the magnitude and direction of the electric field at (0, y)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The magnitude of the field must be found by the equation kq/r^2

The given problem gives q corresponding to y-a and y+a

The given problem gives -2q corresponding to y

This would yield the quadratic equation:

k*q/(y - a)^2 + k*q/(y + a)^2 - 2k*q/y^2

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The magnitude of the field due to the charge at a point is k q / r^2.

For a point at coordinate y on the y axis, for y > a, we have distances r = y-a, y+a and y.

The charges at these distances are respectively q, q and -2q.

So the field is

k*q/(y - a)^2 + k*q/(y + a)^2 - 2k*q/y^2 = 2*k*q*(y^2 + a^2)/((y + a)^2*(y - a)^2) - 2*k*q/y^2

= 2*k*q* [(y^2 + a^2)* y^2 - (y+a)^2 ( y-a)^2) ] / ( y^2 (y + a)^2*(y - a)^2)

= 2*k*q* [y^4 + a^2 y^2 - (y^2 - a^2)^2 ] / ( y^2 (y + a)^2*(y - a)^2)

= 2*k*q* [y^4 + a^2 y^2 - y^4 + 2 y^2 a^2 - a^4 ] / ( y^2 (y + a)^2*(y - a)^2) = 2*k*q* [ 3 a^2 y^2 - a^4 ] / ( y^2 (y + a)^2*(y - a)^2) .

For large y the denominator is close to y^6 and the a^4 in the numerator is insignifant compared to a^2 y^2 sothe expression becomes

6 k q a^2 / y^4,

which is inversely proportional to y^4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good work. See my notes and let me know if you have questions. &#