course Phys 201 ????????|???assignment #007
......!!!!!!!!...................................
11:56:25 `q001. We obtain an estimate of the acceleration of gravity by determining the slope of an acceleration vs. ramp slope graph for an object gliding down an incline. Sample data for an object gliding down a 50-cm incline indicate that the object glides down the incline in 5 seconds when the raised end of the incline is .5 cm higher than the lower end; the time required from rest is 3 seconds when the raised end is 1 cm higher than the lower end; and the time from rest is 2 seconds when the raised end is 1.5 cm higher than the lower end. What is the acceleration for each trial?
......!!!!!!!!...................................
RESPONSE --> Trial 1 50 cm/5s=10cm/sec Trial 2 50cm/3sec=16.67sec Trial 3 50 cm/2sec= 25cm/sec confidence assessment: 3
.................................................
......!!!!!!!!...................................
11:58:01 We can find the accelerations either using equations or direct reasoning. To directly reason the acceleration for the five-second case, we note that the average velocity in this case must be 50 cm/(5 seconds) = 10 cm/s. Since the initial velocity was 0, assuming uniform acceleration we see that the final velocity must be 20 cm/second, since 0 cm/s and 20 cm/s average out to 10 cm/s. This implies a velocity change of 20 cm/second a time interval of 5 seconds, or a uniform acceleration of 20 cm/s / (5 s) = 4 cm/s^2. The acceleration in the 3-second case could also be directly reasoned, but instead we will note that in this case we have the initial velocity v0 = 0, the time interval `dt = 3 sec, and the displacement `ds = 50 cm. We can therefore find the acceleration from the equation `ds = v0 `dt + .5 a `dt^2. Noting first that since v0 = 0 the term v0 `dt must also be 0,we see that in this case the equation reduces to `ds = .5 a `dt^2. We easily solve for the acceleration, obtaining a = 2 `ds / `dt^2. In this case we have a = 2 * (50 cm) / (3 sec)^2 = 11 cm/s^2 (rounded to nearest cm/s^2). For the 2-second case we can use the same formula, obtaining a = 2 * (50 cm) / (2 sec)^2 = 25 cm/s^2.
......!!!!!!!!...................................
RESPONSE --> I definately made this problem harder then it was supposed to be. self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:08:06 `q002. What are the ramp slopes associated with these accelerations?
......!!!!!!!!...................................
RESPONSE --> Trial 1 50cm/.5cm= 25cm Trial 2 50cm/1cm=50cm Trail3 50cm/1.5cm=33.33 confidence assessment: 2
.................................................
......!!!!!!!!...................................
12:11:55 For the 5-second trial, where acceleration was 4 cm/s^2, the 'rise' of the ramp was .5 cm and the 'run' was nearly equal to the 50-cm length of the ramp so the slope was very close to .5 cm / (50 cm) = .01. For the 3-second trial, where acceleration was 11 cm/s^2, the 'rise' of the ramp was 1 cm and the 'run' was very close to the 50-cm length, so the slope was very close to 1 cm / (50 cm) = .02. For the 2-second trial, where the acceleration was 25 cm/s^2, the slope is similarly found to be very close to 1.5 cm / (50 cm) = .03.
......!!!!!!!!...................................
RESPONSE --> I had rise/run backwards. self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:22:41 `q003. Sketch a reasonably accurate graph of acceleration vs. ramp slope and give a good description and interpretation of the graph. Be sure to include in your description how the graph points seem to lie with respect to the straight line that comes as close as possible, on the average, to the three points.
......!!!!!!!!...................................
RESPONSE --> The Y axis consists of the 3 acceleration trials. The X axis consists of the 3 slope trials. The graphed point seem to lie above the the straight line. confidence assessment: 2
.................................................
......!!!!!!!!...................................
12:23:10 The graph will have acceleration in cm/s^2 on the vertical axis (the traditional y-axis) and ramp slope on the horizontal axis (the traditional x-axis). The graph points will be (.01, 4 cm/s^2), (.02, 11.1 cm/s^2), (.03, 25 cm/s^2). The second point lies somewhat lower than a line connecting the first and third points, so the best possible line will probably be lower than the first and third points but higher than the second. The graph indicates that acceleration increases with increasing slope, which should be no surprise. It is not clear from the graph whether a straight line is in fact the most appropriate model for the data. If timing wasn't particularly accurate, these lines could easily be interpreted as being scattered from the actual linear behavior due to experimental errors. Or the graph could indicate acceleration vs. ramp slope behavior that is increasing at an increasing rate.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:57:27 `q004. Carefully done experiments show that for small slopes (up to a slope of about .1) the graph appears to be linear or very nearly so. This agrees with theoretical predictions of what should happen. Sketch a vertical line at x = .05. Then extend the straight line you sketched previously until it intersects the y axis and until it reaches past the vertical line at x = .05. What are the coordinates of the points where this line intersects the y-axis, and where it intersects the x =.05 line? What are the rise and the run between these points, and what therefore is the slope of your straight line?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 0
.................................................
......!!!!!!!!...................................
12:58:02 A pretty good straight line goes through the points (0, -6 cm/s^2) and (.05, 42 cm/s^2). Your y coordinates might differ by a few cm/s^2 either way. For the coordinates given here, the rise is from -6 cm/s^2 to 42 cm/s^2, a rise of 48 cm/s^2. The run is from 0 to .05, a run of .05. The slope of the straight line is approximately 48 cm/s^2 / .05 = 960 cm/s^2. Note that this is pretty close to the accepted value, 980 cm/second^2, of gravity. Carefully done, this experiment will give us a very good estimate of the acceleration of gravity.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
16:33:08 ** Student Solution: Using 'dt and a, find 'dv. Using 'dv and v0, find vf. Using vf and vO, find vave. Using 'dt and Vave, find 'ds. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
16:33:16 Explain in detail how the flow diagram for the situation in which v0, vf and `dt are known gives us the two most fundamental equations of motion.
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
16:33:20 **Student Solution: v0 and vf give you `dv = vf - v0 and vAve = (vf + v0) / 2. `dv is divided by `dt to give accel. So we have a = (vf - v0) / `dt. Rearranging this we have a `dt = vf - v0, which rearranges again to give vf = v0 + a `dt. This is the second equation of motion. vAve is multiplied by `dt to give `ds. So we have `ds = (vf + v0) / 2 * `dt. This is the first equation of motion Acceleration is found by dividing the change in velocity by the change in time. v0 is the starting velocity, if it is from rest it is 0. Change in time is the ending beginning time subtracted by the ending time. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
16:46:09 qaExplain in detail how the flow diagram for the situation in which v0, a and `dt are known gives us the third fundamental equations of motion.
......!!!!!!!!...................................
RESPONSE --> Given v0,a, and dt, one can find the third fundemental equation of motion by using v0 plus a multiplied by dt to find vf. After find vf one can minus vf from v0 to get dv. Once vf is found, it can be added to v0 then divided by 2 for the vAve. To find the ds one can multipy the vAve by the dt. Which can also be written out in the equation form of vf=v0^2+2a*ds ( the Third fundemental equation of motion. self critique assessment: 2
.................................................
......!!!!!!!!...................................
16:49:34 ** a and `dt give you `dv. `dv and v0 give you vf. v0 and vf give you vAve. vAve and `dt give you `ds. In symbols, `dv = a `dt. Then vf = v0 + `dv = v0 + a `dt. Then vAve = (vf + v0)/2 = (v0 + (v0 + a `dt)) / 2) = v0 + 1/2 a `dt. Then `ds = vAve * `dt = [ v0 `dt + 1/2 a `dt ] * `dt = v0 `dt + 1/2 a `dt^2. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
16:52:11 Why do we think in terms of seven fundamental quantities while we model uniformly accelerated motion in terms of five?
......!!!!!!!!...................................
RESPONSE --> Because all 5 of the seven quantities must be used in uniformly accelerated motion in order to form the last two quantities, vAve and dv. confidence assessment: 2
.................................................
......!!!!!!!!...................................
16:52:32 ** ONE WAY OF PUTTING IT: The four equations are expressed in terms of five fundamental quantities, v0, vf, a, `dt and `ds. However to think in terms of meanings we have to be able to think not only in terms of these quantities but also in terms of average velocity vAve and change in velocity `dv, which aren't among these five quantities. Without the ideas of average velocity and change in velocity we might be able to use the equations and get some correct answers but we'll never understand motion. ANOTHER WAY: The four equations of unif accelerated motion are expressed in terms of five fundamental quantities, v0, vf, a, `dt and `ds. The idea here is that to intuitively understand uniformly accelerated motion, we must often think in terms of average velocity vAve and change in velocity `dv as well as the five quantities involved in the four fundamental equations. one important point is that we can use the five quantities without any real conceptual understanding; to reason things out rather than plugging just numbers into equations we need the concepts of average velocity and change in velocity, which also help us make sense of the equations. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
14:19:04 Accelerating down an incline through a given distance vs. accelerating for a given time Why does a given change in initial velocity result in the same change in final velocity when we accelerated down a constant incline for the same time, but not when we accelerated down the same incline for a constant distance?
......!!!!!!!!...................................
RESPONSE --> Because there is a change is distance (ds), The amount of time it takes for the object to get to it's end destination changes the uniformly accelerated motion changes regardless of the vf. confidence assessment: 3
.................................................
......!!!!!!!!...................................
14:21:58 ** If we accelerate down a constant incline our rate of change of velocity is the same whatever our initial velocity. So the change in velocity is determined only by how long we spend coasting on the incline. Greater `dt, greater `dv. If you travel the same distance but start with a greater speed there is less time for the acceleration to have its effect and therefore the change in velocity will be less. You might also think back to that introductory problem set about the car on the incline and the lamppost. Greater initial velocity results in greater average velocity and hence less time on the incline, which gives less time for the car to accelerate. **
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................