Assignment 10 -query

course Mth 152

7/2 around 11:55pm

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution.

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

010. ``q Query 10

`q Query 12.5.6 fair dice game pays $3 for 6, $2 for 5, $1 for 4. What is a fair price to pay for playing this game?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

$3 * 1/6 + $2 * 1/6 + $1 * 1/6 = 0.5 + 0.333 + 0.167 = 0.99

It would be fair to pay app. $1 to play this game.

Confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA 1 in 6 chance of getting $3 is worth 1/6 * $3 = $.50 .

A 1 in 6 chance of getting $2 is worth 1/6 * $2 = $.33 1/3 .

A 1 in 6 chance of getting $1 is worth 1/6 * $1 = $.16 2/3 .

The total expectation is $1.00 * 1/6 + $2.00 * 1/6 + $3.00 * 1/6 = $1.00

So a fair price to pay is $1.00 **

`q Query 12.5.10 expectation Roulette $1 bet 18 red, 18 black one zero

What is the expected net value of a bet on red?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

$1 * 18/37 + (-$1) * 18/37 + (-$1) * 1/37 = 0.486 – 0.486 + 0.027 = 0.027

Expected net winnings are app $0.03

Confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIf your net gain is $1 for a win and -$1 for a loss the expected value is

18/37 * (+1) + 19/37 * (-1) = -$.027. **

`q Query 12.5.20 exp sum of 2 of 5 cards 1-5.

What is the expected sum of the numbers on the two cards drawn?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I’m not sure how to go about solving this problem? The previous two problems dealt with plugging given numbers into a type of formula. I’m sure that this is solvable using the same method, I’m just not sure where to start?

Confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aYou can't get a sum of 1 on two cards. There is also no way to get a sum of two, since the lowest total possible is 1 + 2 = 3.

There are 2 ways to get total 3. You can get 1 on the first and 2 on the second, or vice versa.

There are 2 ways to get total 4. You can get 1 on the first and 3 on the second, or vice versa.

There are 4 ways to get total 5. You can get 1 on the first and 4 on the second, or vice versa, or 2 on the first and 3 on the second, or vice versa.

There are 4 ways to get total 6. You can get 1 on the first and 5 on the second, or vice versa, or 2 on the first and 4 on the second, or vice versa.

There are 4 ways to get total 7. You can get 2 on the first and 5 on the second, or vice versa, or 4 on the first and 3 on the second, or vice versa.

There are 2 ways to get total 8. You can get 3 on the first and 5 on the second, or vice versa.

There are 2 ways to get total 9. You can get 4 on the first and 5 on the second, or vice versa.

You can't get more than 9.

There are 2+2+4+4+4+2+2 = 20 possibilities, so the probabilities are 2/20, 4/20, 5/20, etc..

The expected sum is therefore

2/20 * 3 + 2/20 * 4 + 4/20 * 5 + 4/20 * 6 + 4/20 * 7 + 2/20 * 8 + 2/20 * 9.

This gives 120 / 20 = 6. **

Self-Critique: This makes sense, though I would have needed help getting started. But I didn’t think about finding the probabilities on my own, but that would make sense because this chapter is on probabilities. And I first I didn’t understand what each probability was being multiplied by, but I see now that they are each multiplied by the total that they are representing. (ex: 2/20 * 3 represents a 2/20 probability of the two cards adding to three).

`q Query Add comments on any surprises or insights you experienced as a result of this assignment.

The questions that are more obvious were not difficult at all for me, but the last question caused me a lot of problems because I didn’t take the information from other sections on probability and apply them together.

&#This looks good. Let me know if you have any questions. &#