course Phy 242 Professor Smith, Just to let you know that I am planning on taking Test I in the Learning Lab at VHCC on this Friday, Oct. 13th. I hope that this is ok. If you prefer that I do it sooner please email me and let me know. The reason for the delay is that I have a Cell Biology Test here at King College on Monday. }ifɐ~j|
......!!!!!!!!...................................
22:16:01 query doppler shift experiment (experiment was to be read and viewed only) **** explain why the frequency of the sound observed when the buzzer moves toward you is greater than that of the stationary buzzer and why this frequency is greater than that observed when the buzzer is moving away from you
......!!!!!!!!...................................
RESPONSE --> The frequency of a wave is the velocity dvided by the wavelength. So when and object is moving toward a source of sound the two velocities (that of the listener and the sound wave itself) must be combined and then divided by the wavelength, this gives you a frequency that is differenct than that of the source. The same goes for the other scenario where the source of the sound is moving away from the stationary listener. The difference of the two velocities( source of the sound and the sound itself) must be found and then divided by the wavelength to determine the frequency.
.................................................
......!!!!!!!!...................................
22:16:09 ** The 'pulses' emitted by an approaching source in a certain time interval are all received in a shorter time interval, since the last 'pulse' is emitted closer to the source than the first and therefore arrives sooner than if the source was still. So the frequency is higher. If the source is moving away then the last 'pulse' is emitted further from the source than if the source was still, hence arrives later, so the pulses are spread out over a longer time interval and the frequency is lower. GOOD EXPLANATION FROM STUDENT: Well, for the purposes of this explanation, I am going to explain the movement of the buzzer in one dimention which will be towards and away. The buzzer is actually moving in a circle which means it exists in three dimentions but is moving in two dimentions with relation to the listener. However, using trigonometry we can determine that at almost all times the buzzer is moving either towards or away from the listener so I will explain this in terms of one dimention. }When a buzzer is 'buzzing' it is emitting sound waves at a certain frequency. This frequency appears to change when the buzzer moves toward or away from the listener but the actual frequency never changes from the original frequency. By frequency we mean that a certain number of sound waves are emitted in a given time interval (usually x number of cycles in a second). So since each of the waves travel at the same velocity they will arrive at a certain vantage point at the same frequency that they are emitted. So If a 'listener' were at this given vantage point 'listening', then the listener would percieve the frequency to be what it actually is. Now, if the buzzer were moving toward the listener then the actual frequency being emitted by the buzzer would remain the same. However, the frequency percieved by the listener would be higher than the actual frequency. This is because, at rest or when the buzzer is not moving, all of the waves that are emitted are traveling at the same velocity and are emitted from the same location so they all travel the same distance. But, when the buzzer is moving toward the listener, the waves are still emitted at the same frequency, and the waves still travel at the same velocity, but the buzzer is moving toward the listener, so when a wave is emitted the buzzer closes the distance between it and the listener a little bit and there fore the next wave emitted travels less distance than the previous wave. So the end result is that each wave takes less time to reach the listener than the previously emitted wave. This means that more waves will reach the listener in a given time interval than when the buzzer was at rest even though the waves are still being emitted at the same rate. This is why the frequency is percieved to be higher when the buzzer is moving toward the listener. By the same token, if the same buzzer were moving away from the listener then the actual frequency of the waves emitted from the buzzer would be the same as if it were at rest, but the frequency percieved by the listener will be lower than the actual frequency. This is because, again at rest the actual frequency will be the percieved frequency. But when the buzzer is moving away from the listener, the actual frequency stays the same, the velocity of the waves stays the same, but because the buzzer moves away from the listener a little bit more each time it emits a wave, the distance that each wave must travel is a little bit more than the previously emitted wave. So therefore, less waves will pass by the listener in a given time interval than if the buzzer were not moving. This will result in a lower percieved frequency than the actual frequency. **
......!!!!!!!!...................................
RESPONSE --> Understood.
.................................................
......!!!!!!!!...................................
22:16:14 query General College Physics and Principles of Physics: what is a decibel?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:16:16 ** dB = 10 log( I / I0 ), where I is the intensity of the sound in units of power per unit area and I0 is the 'hearing threshold' intensity. MORE EXTENSIVE EXPLANATION FROM STUDENT: Sound is possible because we exist in a medium of air. When a sound is emitted, a concussive force displaces the air around it and some amount energy is transferred into kinetic energy as air particles are smacked away from the force. These particles are now moving away from the initial force and collide into other air particles and send them moving and ultimately through a series of collisions the kinetic energy is traveling out in all directions and the air particles are what is carrying it. The behavior of this kinetic energy is to travel in waves. These waves each carry some amount of kinetic energy and the amount of energy that they carry is the intensity of the waves. Intensities of waves are given as a unit of power which is watts per square meter. Or since the waves travel in all directions they move in three dimentions and this unit measures how many watts of energy hits a square meter of the surface which is measuring the intensity. But we as humans don't percieve the intensities of sound as they really are. For example, a human ear would percieve sound B to be twice as loud as sound A when sound B is actually 10 times as loud as sound A. Or a sound that is ... 1.0 * 10^-10 W/m^2 is actually 10 times louder than a sound that is 1.0 * 10^-11 W/m^2 but the human ear would percieve it to only be twice as loud. The decibel is a unit of intensity for sound that measures the intensity in terms of how it is percieved to the human ear. Alexander Graham Bell invented the decibel. Bell originally invented the bel which is also a unit of intensity for waves. The decibel is one tenth of a bel and is more commonly used. The formula for determing the intensity in decibels is ... Intensity in decibles = the logarithm to the base 10 of the sound's intensity/ I base 0 I base 0 is the intensity of some reference level and is usually taken as the minimum intensity audible to an average person which is also called the 'threshold of hearing'. Since the threshold of hearing is in the denominator, if a sound is this low or lower the resulting intensity will be 0 decibles or inaudible. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:16:19 gen phy what is the difference between the node-antinode structure of the harmonics a standing wave in a string and in an organ pipe closed at one end
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:16:21 ** in a string there are nodes at both ends so the harmonics are described the the configurations NAN, NANAN, NANANAN, etc.. In a pipe closed at one end there is a node at one end and an antinode at the other so the possible configurations are NA, NANA, NANANA, etc.. displacement nodes are at both ends of the string, so the structure is N &&& N, where &&& is any sequence of nodes and antinodes that results in an alternating sequence. The possibilities are NAN, NANAN, NANANAN, ... , containing 1, 2, 3, 4, ..., half-wavelengths in the length of the string. Possible wavelengths are therefore 2 L, 1 L, 2/3 L, ..., where L is string length. For an open organ pipe the configuration must be N &&& A. Possibilities include NA, NANA, NANANA, NANANANA, ..., containing 1, 3, 5, 7, ..., quarter-wavelengths. Possible wavelengths are therefore 4 L, 4/3 L, 4/5 L, 4/7 L, ... **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:16:23 **** gen phy what are beats?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:16:25 ** Beats are what happens when the two sounds are close in frequency. Beats occur when the combined sound gets louder then quieter then louder etc. with a frequency equal to the differences of the frequencies of the two sounds. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:03:56 **** query univ phy 16.54 (20.32 10th edition) steel rod 1.5 m why hold only at middle to get fund? freq of fund? freq of 1st overtone and where held? **** why can the rod be held only at middle to get the fundamental?
......!!!!!!!!...................................
RESPONSE --> The middle of the rod represents the node, the part of a wave that never moves, whereas the ends are the antinodes which are the points of extreme amplification. The frequency of the fundamental harmonic is determined by: f = (n*v)/(2*L) The n represents the harmonic which is 1 in the fundamental. The v is the velocity of sound in a given substance and in steel it is 5941 m/s. The L is the distance from node to node which in this case is 1.5m, the length of the steel rod. (Technically the distance from antinode to antinode but the distance is the same betweeen nodes.) So plug in the known information and we get. f = [(1)(5941 m/s)]/[(2)(1.5m)] f = 1,980 / s The first overtone or second harmonic is found by simply multiplying the fundamental harmonic by 2. So we get: f * 2 = 3960.7 / s The rod would need to be held at a point equivalent to one of the nodes of the 2nd Harmonic or the 1st Overtone. This is approximately a quarter of the total distance of the rod from one end or the other. So, 1.5 m / 4 = 0.375 m. So one would need to hold the rod 0.375 m from one end or the other.
.................................................
......!!!!!!!!...................................
23:05:16 STUDENT SOLUTION WITH INSTRUCTOR COMMENTS: Since the rod is a rigid body it can form the smallest frequency corresponding to the largest wavelength only when held at the center. The smallest frequency corresponding to the largest wavelength is known as the fundamental. (a) the fingers act as a sort of pivot and the bar performs a teeter - totter motion on either side of the pivot **note: the motion is more like the flapping of a bird's wings, though it obviously doesn't result from the same sort of muscular action but rather from an elastic response to a disturbance, and the motion attenuates over time**. With this manner of motion, the ends have the greatest amount of amplitude, thus making them the antinodes. (b)Holding the rod at any point other than the center changes the wavelngth of the first harmonic causing one end of the rod to have a smaller wave motion than the other. Since the fundamental frequency is in essence the smallest frequency corresponding to the largest wavelength, offsetting Lwould produce an unappropriatley sized wavelength. (c)Fundamental frequency of a steel rod: ( 5941 m /s) / [(2/1)(1.5m) = 1980.33Hz (d) v / (2/2) L = 3960.67Hz --achieved by holding the rod on one end. INSTRUCTOR COMMENTS: The ends of the rod are free so it can vibrate in any mode for which the ends are antinodes. The greatest possible wavelength is the one for which the ends are antinodes and the middle is a node (form ANA). Since any place the rod is held must be a node (your hand would quickly absorb the energy of the vibration if there was any wave-associated particle motion at that point) this ANA configuration is possible only if you hold the rod at the middle. Since a node-antinode distance corresponds to 1/4 wavelength the ANA configuration consists of 1/2 wavelength. So 1/2 wavelength is 1.5 m and the wavelength is 3 m. At propagation velocity 5941 m/s the 3 m wavelength implies a frequency of 5941 m/s / (3 m) = 1980 cycles/sec or 1980 Hz, approx.. The first overtone occurs with antinodes at the ends and node-antinode-node between, so the configuration is ANANA. This corresponds to 4 quarter-wavelengths, or a full wavelength. The resulting wavelength is 1.5 m and the frequency is about 3760 Hz. }THE FOLLOWING INFORMATION MIGHT OR MIGHT NOT BE RELATED TO THIS PROBLEM: STUDENT RESPONSES WITH INSTRUCTOR COMMENTS INSERTED To find the amplitudes at 40, 20 and 10 cm from the left end: The amplitudes are: at 40 cm 0 at 20 cm .004m at 10 cm .002828 m I obtained my results by using the information in the problem to write the equation of the standing wave. Since the cosine function is maximum at 0, I substituted t=0 into the equation and the value of x that I wanted to find the amplitude for. ** wavelength = 192 m/2 / (240 Hz) = .8 m. Amplitude at x is .4 cm sin(2 `pi x / .8 m) **the maximum transverse velocity and acceleration at each of these points are found from the equation of motion: `omega = 2 `pi rad * 240 cycles / sec = 480 `pi rad/s. .004 m * 480 `pi rad/s = 6 m/s approx and .004 m * ( 480 `pi rad/s)^2 = 9000 m/s^2, approx. .0028 m * 480 `pi rad/s = 4 m/s approx and .0028 m * ( 480 `pi rad/s)^2 = 6432 m/s^2, approx. **
......!!!!!!!!...................................
RESPONSE --> Understood.
.................................................
G|ܶq assignment #013 { Physics II 10-07-2006
......!!!!!!!!...................................
23:10:27 query experiment to be viewed and read but not performed: transverse and longitudinal waves in aluminum rod what is the evidence that the higher-pitched waves are longitudinal while the lower-pitched waves are transverse?
......!!!!!!!!...................................
RESPONSE --> The higher the pitch the greater the frequency. In a longitudinal wave, where the particles of the medium move parrallel to the direction of the wave, the frequency would be greater because the amplitudes would not be displaced as much. In the transverse wave the particles of the medium move perpendicular to the direction of the wave and thus the amplitude is displaced more and the frequency and thus the pitch are lower.
.................................................
......!!!!!!!!...................................
23:10:57 STUDENT RESPONSE: The logitudinal waves had a higher velocity. That doesn't provide evidence that the high-pitched wave was longitudinal, since we didn't directly measure the velocity of those waves. The higher-pitches waves were damped out much more rapidly by touching the very end of the rod, along its central axis, than by touching the rod at the end but on the side. The frequency with which pulses arrive at the ear determines the pitch. The amplitude of the wave affects its intensity, or energy per unit area. For a given pitch the energy falling per unit area is proportional to the square of the amplitude. Intensity is also proportional to the square of the frequency. **
......!!!!!!!!...................................
RESPONSE --> Understood.
.................................................
......!!!!!!!!...................................
23:10:59 Query General College Physics and Principles of Physics 12.08: Compare the intensity of sound at 120 dB with that of a whisper at 20 dB.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:11:01 The intensity at 120 dB is found by solving the equation dB = 10 log(I / I_threshold) for I. We get log(I / I_threshold) = dB / 10, so that I / I_threshold = 10^(120 / 10) = 12and I = I_threshold * 10^12. Since I_threshold = 10^-12 watts / m^2, we have for dB = 120: I = 10^-12 watts / m^2 * 10^12 = 1 watt / m^2. The same process tells us that for dB = 20 watts, I = I_threshold * 10^(20 / 10) = 10^-12 watts / m^2 * 10^2 = 10^-10 watts / m^2. Dividing 1 watt / m^2 by 10^-10 watts / m^2, we find that the 120 dB sound is 10^10 times as intense, or 10 billion times as intense. A more elegant solution uses the fact that dB_1 - dB_2 = 10 log(I_1 / I_threshold) - ( 10 log(I_2 / I_threshold) ) = 10 log(I_1 / I_threshold) - ( 10 log(I_2 / I_threshold) ) = 10 {log(I_1) - log( I_threshold) - [ ( log(I_2) - log(I_threshold) ]} = 10 { log(I_1) - log(I_2)} = 10 log(I_1 / I_2). So we have 120 - 20 = 100 = 10 log(I_1 / I_2) and log(I_1 / I_2) = 100 / 10 = 10 so that I_1 / I_2 = 10^10.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:11:03 Query gen phy 12.30 length of open pipe, 262 Hz at 21 C? **** gen phy What is the length of the pipe?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:11:05 GOOD STUDENT SOLUTION First we must determine the velocity of the sound waves given the air temperature. We do this using this formula v = (331 + 0.60 * Temp.) m/s So v = (331 + 0.60 * 21) m/s v = 343.6 m/s The wavelength of the sound is wavelength = v / f = 343.6 m/s / (262 Hz) = 0.33 meters. So 262 Hz = 343.6 m/s / 4 * Length Length = 0.33 meters f = v / (wavelength) 262 Hz = [343 m/s] / (wavelength) wavelength = 1.3 m. So the wavelength is 1.3 m. If it's an open pipe then there are antinodes at the ends and the wavelength is 2 times the length, so length of the the pipe is about 1.3 m / 2 = .64 m, approx.. Had the pipe been closed at one end then there would be a node and one end and an antinode at the other and the wavelength of the fundamental would have therefore been 4 times the length; the length of the pipe would then have been 1.3 m / 4 = .32 m. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:59:55 **** Univ phy 16.72 (10th edition 21.32): Crab nebula 1054 A.D.;, H gas, 4.568 * 10^14 Hz in lab, 4.586 from Crab streamers coming toward Earth. Velocity? Assuming const vel diameter? Ang diameter 5 arc minutes; how far is it?
......!!!!!!!!...................................
RESPONSE --> To determine at what rate the edges of the Crab Nebula are expanding we must use the equation: f(R) = 'sqrt[(c-v)/(c+v)]*f(s) f(R) is given as 4.586*10^14 Hz. This is the frequency that reaches Earth. f(s) is given as 4.568*10^14 Hz this is the frequency of the red light given off by Hydrogen in the laboratory. c is the speed of light which is 3.00*10^8 m/s. After plugging all this in and solving for v we get: -1,195219.124 m/s We know that this should be correct because if it is negative it means that the object in question is moving towards us. To determine the diameter of the Crab Nebula we figure the amount of years since the light reached the Earth and then determine the amount of seconds that has been. 2006-1054 = 952 * 365 * 24 * 60 * 60 = 3.00*10^10 seconds Then we multiply the time passed by the speed of the expansion and we determine that the radius shoud be: 3.00*10^10 s * 1,195,219.124 m/s = 3.59*10^16 m Given the radius we must multiply by two to get the diameter. 3.59*10^16 m * 2 = 7.18*10^16 m To determine the distance from earth we need to use the equation: tan 'theta = size/distance Since we are given the arc minute and we have solved for the diameter we can determine the distance from Earth. Distance = 4.9366*10^19 m To convert this to light years we just divide by 9.4605284*10^15 m and we get: 5,218 light years This means that it took 5218 years for the light of the explosion to reach Earth in the year 1054 AD. so be just subtract and we get: 4164 BC This is the year that the Supernova that would become the Crab Nebula actually exploded.
.................................................
......!!!!!!!!...................................
00:01:32 ** Since fR = fS ( 1 - v/c) we have v = (fR / fS - 1) * c = 3 * 10^8 m/s * (4.586 * 10^14 Hz) / (4.568 * 10^14 Hz) = 1.182 * 10^6 m/s, approx. In the 949 years since the explosion the radius of the nebula would therefore be about 949 years * 365 days / year * 24 hours / day * 3600 seconds / hour * 1.182 * 10^6 m/s = 3.5 * 10^16 meters, the diameter about 7 * 10^16 meters. 5 minutes of arc is 5/60 degrees or 5/60 * pi/180 radians = 1.4 * 10^-3 radians. The diameter is equal to the product of the distance and this angle so the distance is distance = diameter / angle = 7 * 10^16 m / (1.4 * 10^-3) = 2.4 * 10^19 m. Dividing by the distance light travels in a year we get the distance in light years, about 6500 light years. CHECK AGAINST INSTRUCTOR SOLUTION: ** There are about 10^5 seconds in a day, about 3 * 10^7 seconds in a year and about 3 * 10^10 seconds in 1000 years. It's been about 1000 years. So those streamers have had time to move about 1.177 * 10^6 m/s * 3 * 10^10 sec = 3 * 10^16 meters. That would be the distance of the closest streamers from the center of the nebula. The other side of the nebula would be an equal distance on the other side of the center. So the diameter would be about 6 * 10^16 meters. A light year is about 300,000 km/sec * 3 * 10^7 sec/year = 9 * 10^12 km = 9 * 10^15 meters. So the nebula is about 3 * 10^16 meters / (9 * 10^15 m / light yr) = 3 light years in diameter, approx. 5 seconds of arc is 5/60 of a degree or 5 / (60 * 360) = 1 / 4300 of the circumference of a full circle, approx. If 1/4300 of the circumference is 6 * 10^16 meters then the circumference is about 4300 times this distance or about 2.6 * 10^20 meters. The circumference is 1 / (2 pi) times the radius. We're at the center of this circle since it is from here than the angular diameter is observed, so the distance is about 1 / (2 pi) * 2.6 * 10^20 meters = 4 * 10^19 meters. This is about 4 * 10^19 meters / (9 * 10^15 meters / light year) = 4400 light years distant. Check my arithmetic. **
......!!!!!!!!...................................
RESPONSE --> Understood.
.................................................
......!!!!!!!!...................................
00:20:50 **** query univ phy 16.66 (21.26 10th edition). 200 mHz refl from fetal heart wall moving toward sound; refl sound mixed with transmitted sound, 85 beats / sec. Speed of sound 1500 m/s. What is the speed of the fetal heart at the instant the measurement is made?
......!!!!!!!!...................................
RESPONSE --> To determine the speed of the fetal heart we must use the following equation: f(2) = [V(1) + V(2)]/V(1) * f(1) f(1) is given as 2.00 MHz or 2*10^6 Hz V(1) is given as 1500 m/s f(2) must be found by using the 85 beats/second and solving for the frequency being reflected which is: 1,999,915 Hz After plugging in all your information and solving for the v(2) we get: -0.06375 m/s, which agrees with the statement that the baby's heart wall moving towards the source of the ultrasound machine.
.................................................
......!!!!!!!!...................................
00:21:15 . ** 200 MHz is 200 * 10^6 Hz = 2 * 10^8 Hz or 200,000,000 Hz. The frequency of the wave reflected from the heart will be greater, according to the Doppler shift. The number of beats is equal to the difference in the frequencies of the two sounds. So the frequency of the reflected sound is 200,000,085 Hz. The frequency of the sound as experienced by the heart (which is in effect a moving 'listener') is fL = (1 + vL / v) * fs = (1 + vHeart / v) * 2.00 MHz, where v is 1500 m/s. This sound is then 'bounced back', with the heart now in the role of the source emitting sounds at frequency fs = (1 + vHeart / v) * 2.00 MHz, the 'old' fL. The 'new' fL is fL = v / (v - vs) * fs = v / (v - vHeart) * (1 + vHeart / v) * 2.00 MHz. This fL is the 200,000,085 Hz frequency. So we have 200,000,085 Hz = 1500 m/s / (v - vHeart) * (1 + vHeart / v) * 2.00 MHz and v / (v - vHeart) * (1 + vHeart / v) = 200,000,085 Hz / (200,000,000 Hz) = 1.000000475. A slight rearrangement gives us (v + vHeart) / (v - vHeart) = 1.000000475 so that v + vHeart = 1.000000475 v - 1.000000475 vHeart and 2.000000475 vHeart = .000000475 v, with solution vHeart = .000000475 v / (2.000000475), very close to vHeart = .000000475 v / 2 = .000000475 * 1500 m/s / 2 = .00032 m/s, about .3 millimeters / sec. **
......!!!!!!!!...................................
RESPONSE --> Understood.
.................................................
"