course mth 173 ?W??z{??{x????assignment #001001. typewriter notation
......!!!!!!!!...................................
14:11:27 `q001. Explain the difference between x - 2 / x + 4 and (x - 2) / (x + 4). The evaluate each expression for x = 2.
......!!!!!!!!...................................
RESPONSE --> In the problem x - 2 / x + 4 as we convert we need to use the order of operation so it would end up as x - (2/4) +4 x - (2/2) + 4= (2) - (2/2) + 4= (2) - (1) + 4= 1 + 4= 5 In the problem (x-2) / (x+4) as we convert we should notice the parentheses so the orders of operation cannot be seperated, ending in the formula (x-2) / (x+4) [the quantity x minus 2 the quantity over the quantity x plus 4 the quantity] (x-2) / (x+4)= ((2)-2) / ((2) +4)= (0) / (6)= 0 confidence assessment: 3
.................................................
......!!!!!!!!...................................
14:17:44 `q002. Explain the difference between 2 ^ x + 4 and 2 ^ (x + 4). Then evaluate each expression for x = 2. Note that a ^ b means to raise a to the b power. This process is called exponentiation, and the ^ symbol is used on most calculators, and in most computer algebra systems, to represent exponentiation.
......!!!!!!!!...................................
RESPONSE --> again the parentheses make all the difference in 2^ x + 4 it would read as 2 to the x power plus 4. 2^(x) +4= 2^(2) +4= 4 +4= 8 Where as in the other one 2^(x+4) it would read 2 to the x plus for power. 2^(x+4)= 2^((2)+4)= 2^(6)= 64 confidence assessment: 3
.................................................
......!!!!!!!!...................................
14:19:14 2 ^ x + 4 indicates that you are to raise 2 to the x power before adding the 4. 2 ^ (x + 4) indicates that you are to first evaluate x + 4, then raise 2 to this power. If x = 2, then 2 ^ x + 4 = 2 ^ 2 + 4 = 2 * 2 + 4 = 4 + 4 = 8. and 2 ^ (x + 4) = 2 ^ (2 + 4) = 2 ^ 6 = 2*2*2*2*2*2 = 64.
......!!!!!!!!...................................
RESPONSE --> Should I write out the powers like 2*2*2*2*2 or will 2^5 suffice? self critique assessment: 2
.................................................
......!!!!!!!!...................................
14:27:23 `q003. What is the numerator of the fraction in the expression x - 3 / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x? What is the denominator? What do you get when you evaluate the expression for x = 2?
......!!!!!!!!...................................
RESPONSE --> The nuemerator in the problem is 3 and the denominator is [ (2x-5)^2 * 3x + 1 ] x- (3/((2x-5)^2) *3x+1) -2 +7x= (2)- (3/((2(2)-5)^2) *3(2)+1) -2 +7(2)= 2 - (19) - 2 + 14= -5 confidence assessment: 2
.................................................
......!!!!!!!!...................................
14:27:39 The numerator is 3. x isn't part of the fraction. / indicates division, which must always precede subtraction. Only the 3 is divided by [ (2x-5)^2 * 3x + 1 ] and only [ (2x-5)^2 * 3x + 1 ] divides 3. If we mean (x - 3) / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x we have to write it that way. The preceding comments show that the denominator is [ (2x-5)^2 * 3x + 1 ] Evaluating the expression for x = 2: - 3 / [ (2 * 2 - 5)^2 * 3(2) + 1 ] - 2 + 7*2 = 2 - 3 / [ (4 - 5)^2 * 6 + 1 ] - 2 + 14 = evaluate in parenthese; do multiplications outside parentheses 2 - 3 / [ (-1)^2 * 6 + 1 ] -2 + 14 = add inside parentheses 2 - 3 / [ 1 * 6 + 1 ] - 2 + 14 = exponentiate in bracketed term; 2 - 3 / 7 - 2 + 14 = evaluate in brackets 13 4/7 or 95/7 or about 13.57 add and subtract in order. The details of the calculation 2 - 3 / 7 - 2 + 14: Since multiplication precedes addition or subtraction the 3/7 must be done first, making 3/7 a fraction. Changing the order of the terms we have 2 - 2 + 14 - 3 / 7 = 14 - 3/7 = 98/7 - 3/7 = 95/7. COMMON STUDENT QUESTION: ok, I dont understand why x isnt part of the fraction? And I dont understand why only the brackets are divided by 3..why not the rest of the equation? INSTRUCTOR RESPONSE: Different situations give us different algebraic expressions; the situation dictates the form of the expression. If the above expression was was written otherwise it would be a completely different expression and most likely give you a different result when you substitute. If we intended the numerator to be x - 3 then the expression would be written (x - 3) / [(2x-5)^2 * 3x + 1 ] - 2 + 7x, with the x - 3 grouped. If we intended the numerator to be the entire expression after the / the expression would be written x - 3 / [(2x-5)^2 * 3x + 1 - 2 + 7x ].
......!!!!!!!!...................................
RESPONSE --> self critique assessment:
.................................................
......!!!!!!!!...................................
14:39:39 `q004. Explain, step by step, how you evaluate the expression (x - 5) ^ 2x-1 + 3 / x-2 for x = 4.
......!!!!!!!!...................................
RESPONSE --> First convert from computer type. ((x-5)^2)x-1+ (3/x) -2= Then plug in variables. (((4)-5)^2) (4)-1 + (3/(4) -2= Then using the order of operations solve the problem... ((-1)^2) (3) + (.75) -2= (-1)(3) + (.75) -2= (-3) + .75 -2= -4.25 confidence assessment: 2
.................................................
......!!!!!!!!...................................
14:41:17 We get (4-5)^2 * 4 - 1 + 3 / 1 - 4 = (-1)^2 * 4 - 1 + 3 / 4 - 2 evaluating the term in parentheses = 1 * 4 - 1 + 3 / 4 - 2 exponentiating (2 is the exponent, which is applied to -1 rather than multiplying the 2 by 4 = 4 - 1 + 3/4 - 2 noting that 3/4 is a fraction and adding and subtracting in order we get = 1 3/4 = 7 /4 (Note that we could group the expression as 4 - 1 - 2 + 3/4 = 1 + 3/4 = 1 3/4 = 7/4). COMMON ERROR: (4 - 5) ^ 2*4 - 1 + 3 / 4 - 2 = -1 ^ 2*4 - 1 + 3 / 4-2 = -1 ^ 8 -1 + 3 / 4 - 2. INSTRUCTOR COMMENTS: There are two errors here. In the second step you can't multiply 2 * 4 because you have (-1)^2, which must be done first.?Exponentiation precedes multiplication. ? Also it isn't quite correct to write -1^2*4 at the beginning of the second step. If you were supposed to multiply 2 * 4 the expression would be (-1)^(2 * 4).? Note also that the -1 needs to be grouped because the entire expression (-1) is taken to the power.?-1^8 would be -1 because you would raise 1 to the power 8 before applying the - sign, which is effectively a multiplication by -1.?......!!!!!!!!................................... RESPONSE --> I believe that i may have made an error where there wern't parentheses only spaces. self critique assessment: 1
.................................................
......!!!!!!!!...................................
14:43:06 *&*& Standard mathematics notation is easier to see. On the other hand it's very important to understand order of operations, and students do get used to this way of doing it. You should of course write everything out in standard notation when you work it on paper. It is likely that you will at some point use a computer algebra system, and when you do you will have to enter expressions through a typewriter, so it is well worth the trouble to get used to this notation. Indicate your understanding of the necessity to understand this notation.
......!!!!!!!!...................................
RESPONSE --> i very much understand how it is useful to be able to translate in between standard and type written. self critique assessment: 2
.................................................
......!!!!!!!!...................................
14:44:25 `q005. At the link http://www.vhcc.edu/dsmith/genInfo/introductory problems/typewriter_notation_examples_with_links.htm (copy this path into the Address box of your Internet browser; alternatively use the path http://vhmthphy.vhcc.edu/ > General Information > Startup and Orientation (either scroll to bottom of page or click on Links to Supplemental Sites) > typewriter notation examples and you will find a page containing a number of additional exercises and/or examples of typewriter notation.Locate this site, click on a few of the links, and describe what you see there.
......!!!!!!!!...................................
RESPONSE --> confidence assessment:
.................................................
......!!!!!!!!...................................
14:44:51 You should see a brief set of instructions and over 30 numbered examples. If you click on the word Picture you will see the standard-notation format of the expression. The link entitled Examples and Pictures, located in the initial instructions, shows all the examples and pictures without requiring you to click on the links. There is also a file which includes explanations. The instructions include a note indicating that Liberal Arts Mathematics students don't need a deep understanding of the notation, Mth 173-4 and University Physics students need a very good understanding,
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
"