18querry

course phy201

ǸI˒Eߩxassignment #018

018. `query 18

Physics I

04-20-2008

......!!!!!!!!...................................

17:20:36

** We treat the vertical and horizontal quantities independently.

We are given vertical displacement and initial velocity and we know that the vertical acceleration is the acceleration of gravity. So we solve the vertical motion first, which will give us a `dt with which to solve the horizontal motion.

We first determine the final vertical velocity using the equation vf^2 = v0^2 + 2a'ds, then average the result with the initial vertical velocity. We divide this into the vertical displacement to find the elapsed time.

We are given the initial horizontal velocity, and the fact that for an ideal projectile the only force acting on it is vertical tells us that the acceleration in the horizontal direction is zero. Knowing `dt from the analysis of the vertical motion we can now solve the horizontal motion for `ds. This comes down to multiplying the constant horizontal velocity by the time interval `dt. **

......!!!!!!!!...................................

RESPONSE -->

by solving to get the change of time from the vertical velocity and displacement. Next multiply the change of time by the horizontal velocity.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

17:21:28

Query class notes #17

Why do we expect that in a collision of two objects the momentum change of each object must be equal and opposite to that of the other?

......!!!!!!!!...................................

RESPONSE -->

for every action there is an eqaul and opposite reaction

confidence assessment: 2

.................................................

......!!!!!!!!...................................

17:21:38

**COMMON ERROR AND INSTRUCTION CORRECTION: This is because the KE change is going to be equal to the PE change.

Momentum has nothing directly to do with energy.

Two colliding object exert equal and opposite forces on one another, resulting in equal and opposite impulses. i.e., F1 `dt = - F2 `dt. The result is that the change in momentum are equal and opposite: `dp1 = -`dp2. So the net momentum change is `dp1 + `dp2 = `dp1 +(-`dp1) = 0. **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

17:23:24

** We analyze the momentum for such a collision in terms of the masses m1 and m2, the before-collision velocities v1 and v2 and the after-collision velocities v1' and v2'.

Total momentum before collision is m1 v1 + m2 v2.

Total momentum after collision is m1 v1' + m2 v2'.

Conservation of momentum, which follows from the impulse-momentum theorem, gives us

m1 v1 + m2 v2 = m1 v1' + m2 v2'. **

......!!!!!!!!...................................

RESPONSE -->

the mass of both objects, the velocity befor-collision, the velocity after-collision, total momentum before and after collision.

self critique assessment: 1

.................................................

......!!!!!!!!...................................

17:27:28

`1Query* gen phy roller coaster 1.7 m/s at point 1, ave frict 1/5 wt, reaches poin 28 m below at what vel (`ds = 45 m along the track)?

......!!!!!!!!...................................

RESPONSE -->

There is no change in PE. All the initial KE of the cars will be lost to nonconservative forces, with nearly all of this energy converted to thermal energy.

The initial speed are 95 km/hr * 1000 m/km * 1 hr / 3600 s = 26.4 m/s, so each car has initial KE of .5 m v^2 = .5 * 7650 kg * (26.4 m/s)^2 = 265,000 Joules, so that their total KE is 2 * 265,000 J = 530,000 J.

This KE is practially all converted to thermal energy.

`1Query* gen phy roller coaster 1.7 m/s at point 1, ave frict 1/5 wt, reaches poin 28 m below at what vel (`ds = 45 m along the track)?

self critique assessment: 1

.................................................

&#

Good work. Let me know if you have questions. &#