course Mth271 ?v???f?J????M??Student Name: assignment #009
......!!!!!!!!...................................
18:39:35 Note that there are 9 questions in this assignment. `q001. The process we used in the preceding series of exercises to approximate the graph of y corresponding to the graph of y ' can be significantly improved. Recall that we used the initial slope to calculate the change in the y graph over each interval. For example on the first interval we used the initial slope -6 for the entire interval, even though we already knew that the slope would be -5 by the time we reached the t = 10 point at the end of that interval. We would have been more accurate in our approximation if we had used the average -5.5 of these two slopes. Using the average of the two slopes, what point would we end up at when t = 10?
......!!!!!!!!...................................
RESPONSE --> -5.5 * 10= -55 10, 45
.................................................
......!!!!!!!!...................................
18:40:01 If the average value slope = -5.5 is used between t = 0 and t = 10, we find that the rise is -55 and we go from (0,100) to (10,45).
......!!!!!!!!...................................
RESPONSE --> I didnt put the 0, 100
.................................................
......!!!!!!!!...................................
18:41:44 `q002. We find that using the average of the two slopes we reach the point (10, 45). At this point we have y ' = -5. By the time we reach the t = 20 point, what will be the slope? What average slope should we therefore use on the interval from t = 10 to t = 20? Using this average slope what point will we end up with when t = 20?
......!!!!!!!!...................................
RESPONSE --> t= 10 ....y'= -5 t= 20 ....y' = -4 so -4.5 *10= -45
.................................................
......!!!!!!!!...................................
18:42:50 The slope at t = 20 is y ' = -4. Averaging this with the slope y ' = -5 at t = 10 we estimate an average slope of (-5 + -4) / 2 = -4.5 between t = 10 and t = 20. This would imply a rise of -45, taking the graph from (10,45) to (20, 0).
......!!!!!!!!...................................
RESPONSE --> OK....I got a bit confussed......I understand that we went up by 10 in the t and that 45-45 is 0 so it wouls be 20, 0
.................................................
......!!!!!!!!...................................
18:44:47 `q003. We found that we reach the point (20, 0), where the slope is -4. Following the process of the preceding two steps, what point will we reach at t = 30?
......!!!!!!!!...................................
RESPONSE --> t= 30 ....y'= -3 -4+-3 / 2= -3.5 * 10= -35 (30, -35)
.................................................
......!!!!!!!!...................................
18:45:01 The slope at t = 20 is y ' = -3. Averaging this with the slope y ' = -4 at t = 20 we estimate an average slope of (-4 + -3) / 2 = -4.5 between t =20 and t = 30. This would imply a rise of -35, taking the graph from (20,0) to (30, -35).
......!!!!!!!!...................................
RESPONSE --> I understand this one
.................................................
......!!!!!!!!...................................
18:46:38 `q004. Continue this process up through t = 70. How does this graph differ from the preceding graph, which was made without averaging slopes?
......!!!!!!!!...................................
RESPONSE --> (40, -60) (50, -75) (60, -80) (70, -75)
.................................................
......!!!!!!!!...................................
18:47:03 The average slopes over the next four intervals would be -2.5, -1.5, -.5 and +.5. These slopes would imply rises of -25, -15, -5 and +5, taking the graph from (30,-35) to (40, -60) then to (50, -75) then to (60, -80) and finally to (70, -75). Note that the graph decreases at a decreasing rate up to the point (60, -80) before turning around and increasing to the ponit (70, -75).
......!!!!!!!!...................................
RESPONSE --> I understnad this I didnt want to type all of them steps...
.................................................
......!!!!!!!!...................................
18:48:22 `q005. Now suppose that y = -.2 t^2 + 5 t + 100 represents depth vs. clock time. What is the corresponding rate function y ' ?
......!!!!!!!!...................................
RESPONSE --> y' = -.2 (2) t+ 5 y' + -.4 t+ 5
.................................................
......!!!!!!!!...................................
18:48:33 The rate function corresponding to y = a t^2 + b t + c is y ' = 2 a t + b. In this example a = -.2, b = 5 and c = 100 so y ' = 2(-.2) t + 5, or y ' = -.4 t + 5.
......!!!!!!!!...................................
RESPONSE --> I understand this
.................................................
......!!!!!!!!...................................
18:50:14 `q006. From the depth function and the rate function we can find the coordinates of the t = 30 point of the graph, as well as the rate of change of the function at that point. The rate of change of the function is identical to the slope of the graph at that point, so we can find the slope of the graph. What are the coordinates of the t = 30 point and what is the corresponding slope of the graph? Sketch a graph of a short line segment through that point with that slope.
......!!!!!!!!...................................
RESPONSE --> y(30)= -.2 (30)^2 + 5 * 30 + 100 = 70 30, 70
.................................................
......!!!!!!!!...................................
18:50:47 At t = 30 we have y = -.2 * 30^2 + 5 * 30 + 100 = 70, and y ' = -.4 * 30 + 5 = -7. The graph will therefore consist of the point (30, 70) and a short line segment with slope -7.
......!!!!!!!!...................................
RESPONSE --> I should have done the last part.......but I really do understand how to do that
.................................................
......!!!!!!!!...................................
18:52:31 `q007. What is the equation of the straight line through the t = 30 point of the depth function of the preceding example, having a slope matching the t = 30 rate of change of that function?
......!!!!!!!!...................................
RESPONSE --> 210 + 70= 280 y= -7 x + 280
.................................................
......!!!!!!!!...................................
18:52:36 A straight line through (30, 70) with slope -7 has equation y - 70 = -7 ( x - 30), found by the point-slope form of a straight line. This equation is easily rearranged to the form y = -7 x + 280.
......!!!!!!!!...................................
RESPONSE --> I got this
.................................................
......!!!!!!!!...................................
18:54:22 Plugging t = 30, 31, 32 into the original function y = -.2 t^2 + 5 t + 100 we get y = 70, 62.8, 55.2 respectively. Plugging t = 30, 31, 32 into the straight-line equation y = -7 t + 280 we get y = 70, 63, 56 respectively.
......!!!!!!!!...................................
RESPONSE --> I hit that button twice I understand how to plug things in so this is not a problem .....sorry
.................................................
......!!!!!!!!...................................
18:56:52 `q009. By how much does the straight-line function differ from the actual depth function at each of the three points? How would you describe the pattern of these differences?
......!!!!!!!!...................................
RESPONSE --> 30 ....0 31....62.8 63 32.....55.2.....56 0, .2, .8
.................................................
......!!!!!!!!...................................
18:56:58 At t = 30 the two functions are identical. At t = 31 the values are 62.8 and 63; the function is .2 units below the straight line. At t = 32 the values are 55.2 and 56; the function is now .8 units below the straight line. The pattern of differences is therefore 0, -.2, -.8. The function falls further and further below the straight line as we move away from the point (30, 70).
......!!!!!!!!...................................
RESPONSE --> OK
.................................................
"