course Phy 121 ٣lເ礒ؾƘassignment #018 018. `query 18 Physics I 03-03-2008
......!!!!!!!!...................................
00:23:03 ** We treat the vertical and horizontal quantities independently. We are given vertical displacement and initial velocity and we know that the vertical acceleration is the acceleration of gravity. So we solve the vertical motion first, which will give us a `dt with which to solve the horizontal motion. We first determine the final vertical velocity using the equation vf^2 = v0^2 + 2a'ds, then average the result with the initial vertical velocity. We divide this into the vertical displacement to find the elapsed time. We are given the initial horizontal velocity, and the fact that for an ideal projectile the only force acting on it is vertical tells us that the acceleration in the horizontal direction is zero. Knowing `dt from the analysis of the vertical motion we can now solve the horizontal motion for `ds. This comes down to multiplying the constant horizontal velocity by the time interval `dt. **
......!!!!!!!!...................................
RESPONSE --> We are given vertical displacement and initial velocity and we know that the vertical acceleration is the acceleration of gravity. So we solve the vertical motion first, which will give us a `dt with which to solve the horizontal motion. We first determine the final vertical velocity using the equation vf^2 = v0^2 + 2a'ds, then average the result with the initial vertical velocity. We divide this into the vertical displacement to find the elapsed time. We are given the initial horizontal velocity, and the fact that for an ideal projectile the only force acting on it is vertical tells us that the acceleration in the horizontal direction is zero. Knowing `dt from the analysis of the vertical motion we can now solve the horizontal motion for `ds. This comes down to multiplying the constant horizontal velocity by the time interval `dt. self critique assessment: 3
.................................................
......!!!!!!!!...................................
00:24:39 Query class notes #17 Why do we expect that in a collision of two objects the momentum change of each object must be equal and opposite to that of the other?
......!!!!!!!!...................................
RESPONSE --> These two objects will be equal and opposite after a collision because of the transfer of energy. PE to KE and vice versa. confidence assessment: 1
.................................................
......!!!!!!!!...................................
00:25:14 **COMMON ERROR AND INSTRUCTION CORRECTION: This is because the KE change is going to be equal to the PE change. Momentum has nothing directly to do with energy. Two colliding object exert equal and opposite forces on one another, resulting in equal and opposite impulses. i.e., F1 `dt = - F2 `dt. The result is that the change in momentum are equal and opposite: `dp1 = -`dp2. So the net momentum change is `dp1 + `dp2 = `dp1 +(-`dp1) = 0. **
......!!!!!!!!...................................
RESPONSE --> Two colliding object exert equal and opposite forces on one another, resulting in equal and opposite impulses. i.e., F1 `dt = - F2 `dt. The result is that the change in momentum are equal and opposite: `dp1 = -`dp2. So the net momentum change is `dp1 + `dp2 = `dp1 +(-`dp1) = 0. OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
00:27:32 What are the six quantities in terms of which we analyze the momentum involved in a collision of two objects which, before and after collision, are both moving along a common straight line? How are these quantities related?
......!!!!!!!!...................................
RESPONSE --> initial velocity and final velocity mass of both objects time of collision displacement PE and KE confidence assessment: 1
.................................................
......!!!!!!!!...................................
00:27:50 ** We analyze the momentum for such a collision in terms of the masses m1 and m2, the before-collision velocities v1 and v2 and the after-collision velocities v1' and v2'. Total momentum before collision is m1 v1 + m2 v2. Total momentum after collision is m1 v1' + m2 v2'. Conservation of momentum, which follows from the impulse-momentum theorem, gives us m1 v1 + m2 v2 = m1 v1' + m2 v2'. **
......!!!!!!!!...................................
RESPONSE --> We analyze the momentum for such a collision in terms of the masses m1 and m2, the before-collision velocities v1 and v2 and the after-collision velocities v1' and v2'. Total momentum before collision is m1 v1 + m2 v2. Total momentum after collision is m1 v1' + m2 v2'. Conservation of momentum, which follows from the impulse-momentum theorem, gives us m1 v1 + m2 v2 = m1 v1' + m2 v2'. self critique assessment: 3
.................................................
......!!!!!!!!...................................
00:29:33 There is no change in PE. All the initial KE of the cars will be lost to nonconservative forces, with nearly all of this energy converted to thermal energy. The initial speed are 95 km/hr * 1000 m/km * 1 hr / 3600 s = 26.4 m/s, so each car has initial KE of .5 m v^2 = .5 * 7650 kg * (26.4 m/s)^2 = 265,000 Joules, so that their total KE is 2 * 265,000 J = 530,000 J. This KE is practially all converted to thermal energy.
......!!!!!!!!...................................
RESPONSE --> The initial speed are 95 km/hr * 1000 m/km * 1 hr / 3600 s = 26.4 m/s, so each car has initial KE of .5 m v^2 = .5 * 7650 kg * (26.4 m/s)^2 = 265,000 Joules, so that their total KE is 2 * 265,000 J = 530,000 J. This KE is practially all converted to thermal energy. self critique assessment: 3
.................................................