Assignment 8  1

course Mth 271

֏Ӝ`HGxM{{pΞassignment #008

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

008. Approximate depth graph from the rate function

02-15-2007

......!!!!!!!!...................................

22:16:18

`q001. Note that there are 5 questions in thie assignment.

Sketch a graph of the function y ' = .1 t - 6 for t = 0 to t = 100. Describe your graph.

......!!!!!!!!...................................

RESPONSE -->

I plugged in number in increments of 10 to get my points. My graph is increasing at a constant rate.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

22:16:57

The graph of this function has an intecept on the y' axis at (0,-6) and an intercept on the x axis at (60,0). The graph is a straight line with slope .1. At t = 100 the graph point is (100,4).

......!!!!!!!!...................................

RESPONSE -->

Those are the exact numbers I got when I plugged them into the function.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

22:23:15

`q002. Now sketch the graph of a function y which starts at the point (0, 100), and whose slope at every t is equal to the value of y ' at t.

Thus, for example, at t = 0 we have y ' = .1 * 0 - 6 = -6, so our graph of y will start off a the t = 0 point (0,100) with a slope of -6, and the graph begins by decreasing rather rapidly.

But the slope won't remain at -6. By the time we get to t = 10 the slope will be y ' = .1 * 10 - 6 = -5, and the graph is decreasing less rapidly than before.

Then by the time we get to t = 20 the slope will be y ' = . 1 * 20 - 6 = -4, etc..

If you sketch a graph of y vs. t with these calculated slopes at the corresponding t values, what does the graph look like? Will it be increasing or decreasing, and will it be doing so at an increasing, decreasing or constant rate? Is the answer to this question different for different parts of the graph? If so over what intervals of the graph do the different answers apply?

......!!!!!!!!...................................

RESPONSE -->

The graph is increasing at a constant rate. The answer could vary for different parts of the graph depending on what your t value is.

The statement of the problem explained why this was not the case. You need to self-critique in detail, explaining exactly what you do and do not understand about the given solution.

confidence assessment: 2

.................................................

......!!!!!!!!...................................

22:25:14

The graph will have slopes -6 at t = 0, -5 at t = 10, -4 at t = 9, etc.. At least for awhile, the slope will remain negative so the graph will be decreasing. The negative slopes will however become less and less steep. So the graph be decreasing at a decreasing rate.

It's obvious that the slopes will eventually reach 0, and since y' is the slope of the y vs. t graph it's clear that this will happen when y' = .1 t - 6 becomes 0. Setting .1 t - 6 = 0 we get t = 60. Note, and think about about the fact, that this coincides with the x-intercept of the graph of y' vs. t. At this point the slope will be 0 and the graph will have leveled off at least for an instant.

Past t = 60 the values of y' will be positive, so the slope of the y vs. t graph will be positive and graph of y vs. t will therefore be increasing. The values of y' will also be increasing, so that the slopes of the y vs. t graph will be increasing, and we can say that the graph will be increasing at an increasing rate.

......!!!!!!!!...................................

RESPONSE -->

I assumed that it was increasing at a constant rate since my numbers for increasing at a consistent number.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

22:27:13

`q003. The graph of y vs. t corresponding to the given rate function y ' = .1 t - 6 has slope -6 at the point (0,100). This slope immediately begins changing, and becomes -5 by the time t = 10. However, let us assume that the slope doesn't change until we get to the t = 10 point. This assumption isn't completely accurate, but we're going to see how it works out.

If the slope remained -6 for t = 0 to t = 10, then starting at (0, 100) what point would we reach when t = 10?

......!!!!!!!!...................................

RESPONSE -->

My calculations show it would be -5 when t=10

confidence assessment: 2

.................................................

......!!!!!!!!...................................

22:28:31

The slope of the graph is the ratio slope = rise / run. If the slope remains at -6 from t = 0 to t = 10, then the difference between 10 is the run. Thus the run is 10 and the slope is -6, so the rise is

rise = slope * run = -6 * 10 = -60.

The y coordinate of the graph therefore changes by -60, from y = 100 to y = 100 + (-60) = 40. The corresponding point is (10, 40).

......!!!!!!!!...................................

RESPONSE -->

I see that you need to multiply by 10 to get the -60 then key into the function to get 40.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

22:30:27

`q004. We see that we reach the point (10, 40) by assuming a slope of -6 from t = 0 to t = 10. We have seen that at t = 10 the slope will be y ' = .1 * 10 - 6 = -5. If we maintain this slope for the interval t = 10 to t = 20, what will be the coordinates of the t = 20 point?

......!!!!!!!!...................................

RESPONSE -->

Multiply by 20 to get the coordinates (10, 80)

confidence assessment: 2

.................................................

......!!!!!!!!...................................

22:32:18

The run from t = 10 to t = 20 is 10. With a slope of -5 this implies a rise of

rise = slope * run = -5 * 10 = -50.

Starting from point (10,40), a rise of -50 and a run of 10 takes the graph to the point (20, -10).

......!!!!!!!!...................................

RESPONSE -->

I see you do this one exactly like the last one except you plug in 20. I didn't realize this is what you were asking.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

22:34:47

`q005. Continue this process up to the t = 70 point, using a 10-unit t interval for each approximation. Describe the graph that results.

......!!!!!!!!...................................

RESPONSE -->

The graph is increasing at an increasing rate. My slope at 20 is -4 at 30 is -3 at 40 is -2 at 50 is -1 at 60 is 0, at 70 is 1

confidence assessment: 2

.................................................

......!!!!!!!!...................................

22:35:12

The slope at t = 20 is y ' = .1 * 20 - 6 = -4. From t = 20 to t = 30 the run is 10, so the rise is rise = slope * run = -4 * 10 = -40. Starting from (20,-10) a rise of -40 and a run of 10 takes us to (30, -50).

The slope at t = 30 is y ' = .1 * 30 - 6 = -3. From t = 30 to t = 40 the run is 10, so the rise is rise = slope * run = -3 * 10 = -30. Starting from (30,-50) a rise of -30 and a run of 10 takes us to (40, -80).

The slope at t = 40 is y ' = .1 * 40 - 6 = -2. From t = 40 to t = 50 the run is 10, so the rise is rise = slope * run = -2 * 10 = -20. Starting from (40,-80) a rise of -20 and a run of 10 takes us to (50, -100).

The slope at t = 50 is y ' = .1 * 50 - 6 = -1. From t = 50 to t = 60 the run is 10, so the rise is rise = slope * run = -1 * 10 = -10. Starting from (50,-100) a rise of -10 and a run of 10 takes us to (60, -110).

The slope at t = 60 is y ' = .1 * 70 - 6 = -0. From t = 60 to t = 70 the run is 10, so the rise is rise = slope * run = -0 * 10 = 0. Starting from (60,-110) a rise of and a run of 10 takes us to (70, -110).

......!!!!!!!!...................................

RESPONSE -->

I understand this process.

self critique assessment: 2

.................................................

Your self-critiques do not demonstrate understanding of this assignment. This doesn't mean that you don't understand it, only that you haven't demonstrated your understanding. I recommend that you go back and insert detailed self-critiques to be sure you understand this series of exercises.