course Mth 271 I enjoyed this assignment! ?}??··?w??????·????assignment #017
......!!!!!!!!...................................
19:36:03 2.5.2 inner, outer fns for (x^2-3x+3)^3
......!!!!!!!!...................................
RESPONSE --> u=x^2 - 3x + 3 y= u^3 confidence assessment: 2
.................................................
......!!!!!!!!...................................
19:36:30 The first function you evaluate is x^2 - 3x + 3. You then cube this result. So the breakdown to get f(g(x)) form is f(z) = z^3 g(x) = x^2 - 3x + 3. **
......!!!!!!!!...................................
RESPONSE --> I got this answer correct and I understand how I got it. self critique assessment: 25
.................................................
......!!!!!!!!...................................
19:37:00 2.5.8 inner, outer fns for (x+1)^-.5
......!!!!!!!!...................................
RESPONSE --> u= x + 1 y= u^ -1/2 confidence assessment: 2
.................................................
......!!!!!!!!...................................
19:37:29 The first function you evaluate is x+1. You then take this result to the -5 power. So the breakdown to get f(g(x)) form is f(z) = z^-.5 g(x) = x+1. **
......!!!!!!!!...................................
RESPONSE --> I got this answer correct and I understand how I got it. self critique assessment: 2
.................................................
......!!!!!!!!...................................
19:38:45 2.5.24 der of f(t) = (9t+2)^(2/3) by gen power rule
......!!!!!!!!...................................
RESPONSE --> Using the general power rule I got the following: 2/3(9t+2)^-1/3 f'(t)= 6(9t+2)^ -1/3 confidence assessment: 2
.................................................
......!!!!!!!!...................................
19:39:21 This function is of the form u^(2/3), where u = 9 t + 2. The derivative of f(t) = u^p is f ' (t) = p * u^(p-1) * u ', by the general power rule. Here p = 2/3, and u ' = (9t + 2)' = 9 so we have f ' (t) = p u^(p-1) * u ' = 2/3 * u^(2/3 - 1) * 9 = 6 * u^(-1/3), or since u = 9 t + 2 f ' (t) = 6 ( 9 t + 2)^(-1/3). **
......!!!!!!!!...................................
RESPONSE --> This is the answer that I got and I understand how I got it using the general power rule. self critique assessment: 2
.................................................
......!!!!!!!!...................................
19:40:53 2.5.32 der of f(x) = (25+x^2)^(-1/2) by gen power rule
......!!!!!!!!...................................
RESPONSE --> -1/2(25 + x^2)^-3/2 (2x) f'(x)= -1x(25+x^2)^-3/2 confidence assessment: 2
.................................................
......!!!!!!!!...................................
19:41:16 Using inner function u = 25+x^2 and outer function = (u)^(-1/2) we get n u^(n-1) du/dx is -1/2 * u^(-3/2) * 2x = - x ( 25+x^2)^(-3/2). **
......!!!!!!!!...................................
RESPONSE --> I got this answer correct also! self critique assessment: 2
.................................................
"