#$&* course Mth 151 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: 836 means 8 * 100 + 3 * 10 + 6 * 1, or 8 * 10^2 + 3 * 10^1 + 6 * 10^0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ self-critique rating #$&*: OK ********************************************* Question: `q002. How would we write 34,907 in terms of powers of 10? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3 x 10,000 + 4 x 1000 + 9 x 100 + 0 x 10 + 7 x 1 = 34,907 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: 34,907 means 3 * 10,000 + 4 * 1000 + 9 * 100 + 0 * 10 + 7 * 1, or 3 * 10^4 + 4 * 10^3 + 9 * 10^2 + 0 * 10 + 7 * 1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `q003. How would we write .00326 in terms of powers of 10? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0 x .1 + 0 x .01 + 3 x .001 + 2 x .0001 + 6 x .00001 = .00326 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: First we note that .1 = 1/10 = 1/10^1 = 10^-1, .01 = 1/100 = 1/10^2 = 10^-2, .001 = 1/1000 = 1/10^3 = 10^-3, etc.. Thus .00326 means 0 * .1 + 0 * .01 + 3 * .001 + 2 * .0001 + 6 * .00001 = 0 * 10^-1 + 0 * 10^-2 + 3 * 10^-3 + 2 * 10^-4 + 6 * 10^-5 . &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `q004. How would we add 3 * 10^2 + 5 * 10^1 + 7 * 10^0 to 5 * 10^2 + 4 * 10^1 + 2 * 10^0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You would start off breaking them into 2 (3 x 10^2 + 5 x 10^1 + 7 x 10^0) + (5 x 10^2 + 4 x 10^1 + 2 x 10^0) Which would then be rearranged as: (3 x 10^2 + 5 x 10^2) + (5 x 10^1+ 4 x 10^1) + (5 x 10^2 + 4 x 10^1 + 2 x 10^0) Which would end up giving you: 8 x 10^2 + 9 x 10^1 + 9 x 10^ 0 = 889 Confidence Assessment: 2
.............................................
Given Solution: We would write the sum as (3 * 10^2 + 5 * 10^1 + 7 * 10^0) + (5 * 10^2 + 4 * 10^1 + 2 * 10^0) , which we would then rearrange as (3 * 10^2 + 5 * 10^2) + ( 5 * 10^1 + 4 * 10^1) + ( 7 * 10^0 + 2 * 10^0), which gives us 8 * 10^2 + 9 * 10^1 + 9 * 10^0. This result would then be written as 899. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `q005. How would we add 4 * 10^2 + 7 * 10^1 + 8 * 10^0 to 5 * 10^2 + 6 * 10^1 + 4 * 10^0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You would split them into: (4 x 10^2 + 7 x 10^1 + 8 x 10^0) + (5 x 10^2 + 6 x 10^1 + 4 x 10^0) Which is rearranged as: (4 x 10^2 + 5 x 10^2) + (7 x 10^1 + 6 + 10^1) + (8 x 10^0 + 4 x 10^0) Which ends up giving you: 9 x 10^2 + 13 x 10^1 + 12 x 10^0 = 1042 confidence rating #$&*: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We would write the sum as (4 * 10^2 + 7 * 10^1 + 8 * 10^0) + (5 * 10^2 + 6 * 10^1 + 4 * 10^0) , which we would then rearrange as (4 * 10^2 + 5 * 10^2) + ( 7 * 10^1 + 6 * 10^1) + ( 8 * 10^0 + 4 * 10^0), which gives us 9 * 10^2 + 13 * 10^1 + 12 * 10^0. Since 12 * 10^0 = (2 + 10 ) * 10^0 = 2 * 10^0 + 10^1, we have 9 * 10^2 + 13 * 10^1 + 1 * 10^1 + 2 * 10^0 = 9 * 10^2 + 14 * 10^1 + 2 * 10^0. Since 14 * 10^1 = 10 * 10^1 + 4 * 10^1 = 10^2 + 4 * 10^1, we have 9 * 10^2 + 1 * 10^2 + 4 * 10^1 + 2 * 10^0 = 10^10^2 + 4 * 10^1 + 2 * 10^0. Since 10*10^2 = 10^3, we rewrite this as 1 * 10^3 + 0 * 10^2 + 4 * 10^1 + 2 * 10^0. This number would be expressed as 1042. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): This one confused me!