#$&* course Mth 151 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: In base 10, 3 * 4^2 + 2 * 4^1 + 1 * 4^0 = 3 * 16 + 2 * 4 + 1 * 1 = 48 + 8 + 1 = 57. STUDENT COMMENT: I am not understanding this. INSTRUCTOR RESPONSE statement 1: 321{base 4} means 3 * 4^2 + 2 * 4^1 + 1 * 4^0. statement 2: 3 * 4^2 + 2 * 4^1 + 1 * 4^0 = 57. What is it you do and do not understand about the above two statements? &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `q002. What would the number 213{base 4} be in base 10 notation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I think it would be 2 x 4^2 + 1 x 4^1 + 3 x 4^0, which ends up = 39 confidence rating #$&*:: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: 213{base 4} means 2 * 4^2 + 1 * 4^1 + 3 * 4^0 = 2 * 16 + 1 * 4 + 3 * 1 = 32 + 4 + 3 = 39. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I got confused by this!
.............................................
Given Solution: 7 = 4 + 3 so 7 * 4^1 can be written as 4 * 4^1 + 3 * 4^1 = 4^2 + 3 * 4^1 Since 6 = 4 + 2, we have 6 * 4^2 = 4 * 4^2 + 2 * 4^2. Since 4 * 4^2 = 4^3, this is 4^3 + 2 * 4^2. Thus 6 * 4^2 + 7 * 4^1 + 3 * 4^1 = (4 * 4^2 + 2 * 4^2) + (4 * 4^1 + 3 * 4^1) + 3 * 4^0 =4^3 + 2 * 4^2 + 4^2 + 3 * 4^1 + 3 * 4^0 = 1 * 4^3 + 3 * 4^2 + 3 * 4^1 + 3 * 4^0. This number would then be 1333 {base 4}. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): See above.
.............................................
Given Solution: Since 1 = 1 * 4^0, Adding one to 1 * 4^3 + 3 * 4^2 + 3 * 4^1 + 3 * 4^0 would give us 1 * 4^3 + 3 * 4^2 + 3 * 4^1 + 3 * 4^0 + 1 * 4^0 = 1 * 4^3 + 3 * 4^2 + 3 * 4^1 + 4 * 4^0. But 4 * 4^0 = 4^1, so we would have 1 * 4^3 + 3 * 4^2 + 3 * 4^1 + 1 * 4^1 + 0 * 4^0 = 1 * 4^3 + 3 * 4^2 + 4 * 4^1 + 0 * 4^0 . But 4 * 4^1 = 4^2, so we would have 1 * 4^3 + 3 * 4^2 + 1 * 4^2 + 0 * 4^1 + 0 * 4^0 = 1 * 4^3 + 4 * 4^2 + 0 * 4^1 + 0 * 4^0 . But 4 * 4^2 = 4^3, so we would have 1 * 4^3 + 1 * 4^3 + 0 * 4^2 + 0 * 4^1 + 0 * 4^0 = 2 * 4^3 + 0 * 4^2 + 0 * 4^1 + 0 * 4^0. We thus have the number 2000{base 4}. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `q005. How would the decimal number 659 be expressed in base 4? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4^4 = 256, which is the last power that wont end up being higher than 659. So, 2 x $6$ + 2 x 4^3 + 1 x 4^2 +0 x 4^1 + 4 x 4^0 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We need to express 659 in terms of multiples powers of 4, with the multiple not exceeding 3. The powers of 4 are 4^0 = 4, 4^1 = 4, 4^2 = 16, 4^3 = 64, 4^4 = 256, 4^5 = 1024. We could continue to higher powers of 4, but since 4^5 = 1024 already exceeds 659 we need not do any further. The highest power of 4 that doesn't exceed 659 is 4^4 = 256. So we will use the highest multiple of 256 that doesn't exceed 659. 2 * 256 = 512, and 3 * 256 exceeds 659, so we will use 2 * 256 = 2 * 4^4. This takes care of 512 of the 659, leaving us 147 to account for using lower powers of 4. We then account for as much of the remaining 147 using the next-lower power 4^3 = 64. Since 2 * 64 = 128 is less than 147 while 3 * 64 is greater than 147, we use 2 * 64 = 2 * 4^3. This accounts for 128 of the remaining 147, which now leaves us 19. The next-lower power of 4 is 4^2 = 16. We can use one 16 but not more, so we use 1 * 16 = 1 * 4^2. This will account for 16 of the remaining 19, leaving us 3. This 3 is accounted for by 3 * 4^0 = 3 * 1. Note that we didn't need 4^1 at all. So we see that 659 = 2 * 4^4 + 2 * 4^3 + 1 * 4^2 + 0 * 4^1 + 3 * 4^0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ self-critique rating #$&*: OK "