Open query 6

course Mth 174

*********************************************

Question: problem 7.3.3 (previously 7.3.15) x^4 e^(3x) **** what it is your antiderivative?

......!!!!!!!!...................................

20:35:16

SOLUTION:

[1/3 * x^4e^3x] – [ 1/3^2 * 4x^3e^3x ] + [ 1/3^3 * 12 x^2e^3x] – [1/3^4 * 24xe^3x] + [1/3^5 * 24 e^3x]

 1/3x^4 – 4/9x^3 + 12/27x^2 – 24/81x + 24/243e^3x + c

 [ 1/3x^4 – 4/9x^3 + 4/9x^2 – 8/27x + 8/81 e^3x +c ]

.............................................

Given Solution:

The integral is of x^4 e^(3 x).

x^4 is a polynomial, and e^(3 x) is of the form e^(a x). So the integrand is of the form

p(x) e^(a x)

with p(x) = x^4 and a = 3.

The correct formula to use is #14

We obtain

p ' (x) = 4 x^3

p '' (x) = 12 x^2

p ''' (x) = 24 x

p '''' (x) = 24.

Thus the solution is

1 / a * p(x) e^(a x) - 1 / a^2 * p ' (x) e^(a x) + 1 / a^3 * p''(x) e^(a x) - 1 / a^4 * p ''' (x) e^(a x) + 1 / a^5 * p''''(x) e^(a x)

= 1 / 3 * x^4 e^(3 x) - 1 / 3^2 * 4 x^3 e^(3 x) + 1 / 3^3 * 12 x^2 e^(3 x) - 1 / 3^4 * 24 x e^(3 x) + 1 / 3^5 * 24 e^(3 x)

= ((1/3) x^4 - (4/9) x^3 + (4/9) x^2 - (8/27)x + (8/81) e^(3x) + C

.........................................

20:35:18

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: Which formula from the table did you use?

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Formula 14

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You should have used formula 14, with a = 3 and p(x) = x^4.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: problem 7.3.7 (previously 7.3.33 1 / [ 1 + (z+2)^2 ) ]) **** What is your integral? **** Which formula from the table did you use and how did you get the integrand into the form of this formula?

.......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Let u= z+2 so—1/(1+u^2)

Formula 24  1/a^2 + x^2  1/a * arctan (x/a)

If a = 1 and x = z+2 then  1/1 * arctan ( z+2/1)

Which = arctan (z+2)

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If you let u = x+2 then du = dz and the integrand becomes 1 / (1 + u^2). This is the derivative of arctan(u), so letting u = z+2 gives us the correct result

• arctan(z+2) + C

Applying the formula:

z is the variable of integration in the given problem, x is the variable of integration in the table. a is a constant, so a won't be z + 2.

By Formula 24 the antiderivative of 1 / (a^2 + x^2) is 1/a * arcTan(x/a).

Unlike some formulas in the table, this formula is easy to figure out using techniques of integration you should already be familiar with:

1 / (a^2 + x^2) = 1 / (a^2( 1 + x^2/a^2) ) = 1/a^2 ( 1 / (1 + (x/a)^2).

Let u = x / a so du = dx / a; you get integrand 1 / a * (1 / (1 + u^2) ) , which has antiderivative 1/a * arcTan(u) = 1/a * arcTan(x/a).

You don't really need to know all that, but it should clarify what is constant and what is variable.

Starting with int(1/ (1+(z+2)^2) dz ), let x = z + 2 so dx = dz. You get

int(1/ (1+x^2) dx ), which is formula 24 with a = 1. The result is

1/1 * arcTan(x/1), or just arcTan(x). Since x = z + 2, the final form of the integral is

arcTan(z+2).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question:

7.4.1 (previously 7.4.6). Integrate 2y / ( y^3 - y^2 + y - 1)

.......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

[ y^3 – y^2 + y – 1 ] = y(y^2+1) – 1(y^2+1) = [(y-1)(y^2+1)]

y/ (y-1)(y^2+1)

(a y + b / y^2 + 1) + c/(y+1) = [-y/ y^2 +1 + 1/y^2+1 + 1/ y-1]

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The denominator factors by grouping:

y^3 - y^2 + y – 1 = (y^3 + y) – (y^2 + 1) = y ( y^2 + 1) – 1 ( y^2 + 1) = (y – 1) ( y^2 + 1).

Using partial fractions you would then have

(a y + b) /(y^2 + 1) + c /(y-1) = y / ( (y^2+1)(y-1)) where we need to evaluate a, b and c.

Putting the left-hand side over a common denominator (multiply the first fraction by (y-1)/(y-1) and the second by (y^2+1) / (y^2 + 1)) we obtain:

[ (a y + b)(y-1) + c(y^2+1) ] / ((y^2+1)(y-1)) = y / ((y^2+1)(y-1)).

The denominators are identical so the numerators are equal, giving us

(a y + b)(y-1) + c(y^2+1) = y, or

a y^2 + (-a + b) y - b + c y^2 + c = y. Grouping the left-hand side:

(a + c) y^2 + (a - b) y + c - b = y. Since this must be so for all y, we have

a + c = 0 (this since the coefficient of y^2 on the right is 0)

-a + b = 1 (since the coefficient of y on the right is 1)

c - b = 0 (since there is no constant term on the right).

From the third equation we have b = c; from the first a = -c. So the second equation

becomes

c + c = 2, giving us 2 c = 2 so that c = 1.

Thus b = c = 1 and a = -c = -1.

Our integrand (a y + b) /(y^2 + 1) + c /(y-1) becomes

(-y + 1 ) / (y^2 + 1) + 1/2 * 1 / (y-1), or

-y / (y^2 + 1) + 1 / (y^2 + 1) + 1 / (y-1).

An antiderivative is easily enough found with or without tables to be

-1/2 ln(y^2 + 1) + arcTan(y) + ln | y - 1 | + c,

where c now stands for an arbitrary integration constant..

DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

&#Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the parts of the given solution on which your solution didn't agree, and if necessary asking specific questions (to which I will respond).

&#

*********************************************

Question: 7.4.12 (previously 7.4.29 (4th edition)). Integrate (z-1)/`sqrt(2z-z^2) **** What did you get for your integral?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Let u = 2z – z^2

and du= (2 -2z)dz  -2(z-1)dz

(z-1)dz = -du/2

(z-1)/ sqrt [2z – z^2] dz = 1/sqrt(u) * -du/2 = - ½ u ^ - ½ du = - u ^ ½ == sqrt[2z – z^2 ]

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If you let u = 2z - z^2 you get du = (2 - 2z) dz or -2(z-1) dz; thus (z-1) dz = -du / 2.

So (z-1) / `sqrt(2z - z^2) dz = 1 / sqrt(u) * (-du/2) = - .5 u^-.5 du, which integrates to

-u^.5. Translated in terms of the original variable z we get

-sqrt(2z-z^2).

If you let u = 2z - z^2 you get du = (2 - 2z) dz or -2(z-1) dz; thus (z-1) dz = -du / 2.

So (z-1) / `sqrt(2z - z^2) dz = 1 / sqrt(u) * (-du/2) = - .5 u^-.5 du, which integrates to

-u^.5. Translated in terms of the original variable z we get

-sqrt(2z-z^2).

DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: 7.4.9 (previously 7.4.36) partial fractions for 1 / (x (L-x))

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

L= 1 & a= 1/L & b = 1/L & (b-a)=0

1/ L [1/x + 1/(L-x) ]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

a / x + b / (L-x) = [ a (L-x) + bx ] / [ x(L-x)] = [ a L + (b-a)x ] / [ x(L-x)].

This is equal to 1 / [ x(L-x) ].

So a L = 1 and (b-a) = 0.

Thus a = 1 / L, and since b-a=0, b = 1/L.

The original function is therefore 1 / x + b / (L-x) = 1 / L [ 1 / x + 1 / (L-x) ].

Integrating we get 1 / L ( ln(x) - ln(L-x) ) = 1 / L ln(x / (L-x) ). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: 7.4.6 (previously 7.4.40 (3d edition #28)). integrate (y+2) / (2y^2 + 3y + 1)

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1/(-1/2 – (-1)) [ (-1/2*1 + 2) ln | x- (-1/2) | - (-1*1 + 2) ln | x – (-1) | ] + c

1/(1/2) [3/2 ln | x + ½ | - 1 ln | x + 1 | + c

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(y+2) / (2y^2 + 3 y + 1) =

(y + 2) / ( (2y + 1) ( y + 1) ) =

(y + 2) / ( 2(y + 1/2) ( y + 1) ) =

1/2 * (y + 2) / ( (y + 1/2) ( y + 1) )

The expression

(y + 2) / ( (y + 1/2) ( y + 1) )

is of the form

(cx + d) / ( (x - a)(x - b) )

with c = 1, d = 2, a = -1/2 and b = -1.

Its antiderivative is given as

1 / (a - b) [ (ac + d) ln | x - a | - (bc + d) ln | x - b | ] + C.

The final result is obtained by substitution.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

"

&#Your work looks good. See my notes. Let me know if you have any questions. &#

#$&*