Query113

#$&*

course Mth 277

10pm 11/14/2011

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

At the end of this document, after the qa problems (which provide you with questions and solutions), there is a series of Questions, Problems and Exercises.

*********************************************

Question: `q001. Find f_x and f_y when f(x,y) = xy^4*arctan(y).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f_x = y^4*arctan(y)

f_y = x*y^4*(1/(1+ y^2) + y*4y^3

= y^4 * [x/(1+y^2) + 4]

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

f_x = y^4 arctan(y)

f_y = x * ( (y^4) ' arcTan(y) - y^4 * (arcTan(y)) ' ) = x * 4 y^3 - y^4 * 1 / (1 + y^2) = y^3 ( 4 x - (y / (1 + y^2) ).

Simplification should be continued until the result is a single fraction with numerator y^3 ( 4 x + 4 x y^2 - y) and denominator (1 + y^2).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Should we use product rule? Not sure where the negative comes in for f_y=x * ( (y^4) ' arcTan(y) - y^4 * (arcTan(y)) ' )

and I hope that I did the inverse function properly. if f_y = arctan(y) then y is at at y if and only if arctan is at y.?????????????Did I say it right?

------------------------------------------------

Self-critique rating:

@&

Your solution is correct.

*@

*********************************************

Question: `q002. Determine z_x and z_y by differentiating the expression 4x^2 + 2y^2 + 3z^2 = 9 implicitly.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f_x = 8x

f_y = 4y

f_z = 6z

z_x = 8x/6z

= (4x/3z)

z_y = 4y/6z

= 2y/3z

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q003. Let f(x,y) = (x^2 + y^2)/(xy), P = (2, -1, -5/2)

Find the slope of the tangent line of the graph of f parallel to the xz-plane at the point P.

Find the slope of the tangent line of the graph of f parallel to the yz-plane at the point P.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

z= f(x,y) = (x^2 + y^2)/(xy)

f(x,-1) = (x^2 - 1) / (-x)

f_x = -1 + 1 / x^2

f_x(2) = -1 + 1/4 = -3/4

f(2,y) = (4 + y^2) / 2y

f_y = -2/y^2 + (1/2)

f_y(-1) = 2 + 1/2 = 3/2

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

In a plane parallel to the xz plane, y is constant and z is a function of x only. If y = -1, then the function becomes -(x^2 + 1) / x,

and its derivative is -1 + 1 / x^2. At x = 2 the slope is therefore -3/4.

Alternatively, f_x = 1/y - y / x^2. At P = (2, -1, -5/2) we get f_x = -1 + 1/2^2 = -3/4.

Analogous analysis of the slope in a plane parallel to the yz plane indicates a slope at (2, -1, -5/2) of 2 - 1/2 = 3/2.

Thus the vectors i - 3/4 k and j + 3/2 k are tangent to the plane at (2, -1, -5/2).

We can calculate a cross product to get a normal vector, and knowing the coordinates of P we can then easily find the equation of the tangent plane.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Took me about an hour to figure that out. sheesh. I understand now.

------------------------------------------------

Self-critique rating:3

*********************************************

Question: `q004. For the two following functions, show that f_xy = f_yx.

f(x,y) = cos(yx^2).

f(x,y) = (cos^2(x))*(cos y).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f(x,y) = cos(yx^2)

f_x = -2xysin(yx^2)

f_y = -x^2sin(yx^2)

in f_xy, differentiate the x value first and with that value, differentiate the y value

f_x = -2xysin(yx^2)

f_xy = -2x^3ycos(yx^2)

f_y = -x^2sin(yx^2)

f_yx= -2x^3ycos(yx^2)

f(x,y) = (cos^2(x))*(cos y)

f_x = cos^2(x)*cos(y) - 2cos(y)*sin(x)cos(x)

f_xy = -cos^2(x)*sin(y) + cos(y)*cos^2(x) - [2cos(y)*sin(2x) - 2sin(2x)*sin(y)

= [sin(y) - cos(y)] * [-cos^2(x) + sin(2x)]

f_y = -cos^2(x)*sin(y) + cos(y)*cos^2(x)

f_yx = -cos^2(x)*sin(y) + sin(y)*sin(2x) - cos(y)*sin(2x) + cos^2(x)*cos(y)

= [sin(y) - cos(y)] * [sin(2x) - cos^2(x)]

I used the product rule to solve for this second equation. first times the derivative of the second, plus second times the derivative of the first.

When solving for x and using the product rule, I only differentiated when the sin or cos was x and when sin and cos was in terms of y when differentiated for x, i solved the sin and cos as a constant and left it alone. I hope that makes sense.

I hope i did it right.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For the first function

f_x = -2 x sin(y x^2) so f_xy = -2 x^3 cos(y x^2)

f_y = -x^2 sin(y x^2) and f_yx = -2 x^3 cos(y x^2)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

You forgot the y. its f_xy = -2x^3ycos(yx^2) and same for f_yx

------------------------------------------------

Self-critique rating: 3

@&

RIght.

f_x = -2 x y sin(y x^2)

The expression f_xy = -2 x^3 cos(y x^2) is correct.

*@

*********************************************

Question: `q005. In physics the wave equation is given by z_tt = c^2 * z_xx and the heat equation is given by z_t = c^2 * z_xx.

In the two following cases, see if z satisfies the wave equation, the heat equation, or neither.

z = sin(2t)*sin(2cx).

z = (e^(-t))(sin (x/c) + cos(x/c).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

z = sin(2t)*sin(2cx)

z_t = sin(2t)*sin(2cx) + sin(2cx)*2cos(2t)

z_tt= sin(2t)*sin(2cx) + sin(2cx)*2cos(2t) + sin(2cx)*-4sin(2t) + 2cos(2t)*sin(2cx)

= sin(2cx)*[sin(2t) + 2cos(2t) -4sin(2t) + 2cos(2t)]

= sin(2cx)*[-3sin(2t) + 4cos(2t)]

z_x = sin(2t)*(2c)cos(2cx) + sin(2cx)*sin(2t)

z_xx = (-4c^2)sin(2t)*sin(2cx) + (2c)cos(2cx)*sin(2t) + sin(2cx)*sin(2t) + (2c)sin(2t)*cos(2cx)

= sin(2t)*sin(2cx)*[-4c^2 + 1] + (2c)*[sin(2t)*cos(2cx) + sin(2t)*cos(2cx)]

= sin(2t)*sin(2cx)*[-4c^2 + 1] + (4c)*[sin(2t)*cos(2cx)]

z_tt = c^2 * z_xx

sin(2cx)*[-3sin(2t) + 4cos(2t)] = c^2 * {sin(2t)*sin(2cx)*[-4c^2 + 1] + (4c)*[sin(2t)*cos(2cx)]}

NO

z_t = c^2 * z_xx

sin(2t)*sin(2cx) + sin(2cx)*2cos(2t) = c^2 * {sin(2t)*sin(2cx)*[-4c^2 + 1] + (4c)*[sin(2t)*cos(2cx)]}

NO

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

For the first function

z_t = (sin(2t)) ' sin( 2 c x) = 2 cos (2 t) sin( 2 c x), and z_tt = -4 sin(2 t) sin(2 c x)

z_x = 2 c sin(2 t) * cos(2 c x) and z_xx = -4 c^2 sin(2 t) sin(2 c x).

The two second partials are identical except for the c^2 in z_xx.

So we see that z_xx = z_tt * c^2.

This is close, but not quite, of the same form as the wave equation. However the wave equation has the c^2 on the z_xx term, not the z_tt term.

Had the function been z = sin(2 x) * sin( 2 c t), it would have satisfied the wave equation.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

So I was suppose to treat the entire sin(cx) as a constant and not even use product rule. All I had to do is find the derivative of sin(2t). wonderful. learned my lesson the hard way.

------------------------------------------------

Self-critique rating:

@&

Right.

If x is constant then, since c is constant in the first place, sin(c x) is constant.

*@

*********************************************

Question: `q002.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. See my notes and let me know if you have questions. &#