#$&* course Mth 277 10pm 11/14/2011 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: f_x = y^4 arctan(y) f_y = x * ( (y^4) ' arcTan(y) - y^4 * (arcTan(y)) ' ) = x * 4 y^3 - y^4 * 1 / (1 + y^2) = y^3 ( 4 x - (y / (1 + y^2) ). Simplification should be continued until the result is a single fraction with numerator y^3 ( 4 x + 4 x y^2 - y) and denominator (1 + y^2). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Should we use product rule? Not sure where the negative comes in for f_y=x * ( (y^4) ' arcTan(y) - y^4 * (arcTan(y)) ' ) and I hope that I did the inverse function properly. if f_y = arctan(y) then y is at at y if and only if arctan is at y.?????????????Did I say it right? ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Let f(x,y) = (x^2 + y^2)/(xy), P = (2, -1, -5/2) Find the slope of the tangent line of the graph of f parallel to the xz-plane at the point P. Find the slope of the tangent line of the graph of f parallel to the yz-plane at the point P. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: z= f(x,y) = (x^2 + y^2)/(xy) f(x,-1) = (x^2 - 1) / (-x) f_x = -1 + 1 / x^2 f_x(2) = -1 + 1/4 = -3/4 f(2,y) = (4 + y^2) / 2y f_y = -2/y^2 + (1/2) f_y(-1) = 2 + 1/2 = 3/2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In a plane parallel to the xz plane, y is constant and z is a function of x only. If y = -1, then the function becomes -(x^2 + 1) / x, and its derivative is -1 + 1 / x^2. At x = 2 the slope is therefore -3/4. Alternatively, f_x = 1/y - y / x^2. At P = (2, -1, -5/2) we get f_x = -1 + 1/2^2 = -3/4. Analogous analysis of the slope in a plane parallel to the yz plane indicates a slope at (2, -1, -5/2) of 2 - 1/2 = 3/2. Thus the vectors i - 3/4 k and j + 3/2 k are tangent to the plane at (2, -1, -5/2). We can calculate a cross product to get a normal vector, and knowing the coordinates of P we can then easily find the equation of the tangent plane. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Took me about an hour to figure that out. sheesh. I understand now. ------------------------------------------------ Self-critique rating:3 ********************************************* Question: `q004. For the two following functions, show that f_xy = f_yx. f(x,y) = cos(yx^2). f(x,y) = (cos^2(x))*(cos y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: f(x,y) = cos(yx^2) f_x = -2xysin(yx^2) f_y = -x^2sin(yx^2) in f_xy, differentiate the x value first and with that value, differentiate the y value f_x = -2xysin(yx^2) f_xy = -2x^3ycos(yx^2) f_y = -x^2sin(yx^2) f_yx= -2x^3ycos(yx^2) f(x,y) = (cos^2(x))*(cos y) f_x = cos^2(x)*cos(y) - 2cos(y)*sin(x)cos(x) f_xy = -cos^2(x)*sin(y) + cos(y)*cos^2(x) - [2cos(y)*sin(2x) - 2sin(2x)*sin(y) = [sin(y) - cos(y)] * [-cos^2(x) + sin(2x)] f_y = -cos^2(x)*sin(y) + cos(y)*cos^2(x) f_yx = -cos^2(x)*sin(y) + sin(y)*sin(2x) - cos(y)*sin(2x) + cos^2(x)*cos(y) = [sin(y) - cos(y)] * [sin(2x) - cos^2(x)] I used the product rule to solve for this second equation. first times the derivative of the second, plus second times the derivative of the first. When solving for x and using the product rule, I only differentiated when the sin or cos was x and when sin and cos was in terms of y when differentiated for x, i solved the sin and cos as a constant and left it alone. I hope that makes sense. I hope i did it right. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: For the first function f_x = -2 x sin(y x^2) so f_xy = -2 x^3 cos(y x^2) f_y = -x^2 sin(y x^2) and f_yx = -2 x^3 cos(y x^2) &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): You forgot the y. its f_xy = -2x^3ycos(yx^2) and same for f_yx ------------------------------------------------ Self-critique rating: 3
.............................................
Given Solution: For the first function z_t = (sin(2t)) ' sin( 2 c x) = 2 cos (2 t) sin( 2 c x), and z_tt = -4 sin(2 t) sin(2 c x) z_x = 2 c sin(2 t) * cos(2 c x) and z_xx = -4 c^2 sin(2 t) sin(2 c x). The two second partials are identical except for the c^2 in z_xx. So we see that z_xx = z_tt * c^2. This is close, but not quite, of the same form as the wave equation. However the wave equation has the c^2 on the z_xx term, not the z_tt term. Had the function been z = sin(2 x) * sin( 2 c t), it would have satisfied the wave equation. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): So I was suppose to treat the entire sin(cx) as a constant and not even use product rule. All I had to do is find the derivative of sin(2t). wonderful. learned my lesson the hard way. ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!