#$&* course Mth 277 845pm 12/3/2011 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: z = x y + 1 = cos(3t) * cot(3 t) + 1, so dz/dt = (cos(3t)) ' cot(3t) + cos(3t) (cot(3t) ) ' = -3 sin(3t) cot(3t) - cos(3 t) sec^2(3 t), which could be simplified. Using the chain rule dz/dt = dz/dx dx/dt + dz/dy dy/dt = y * (-3 sin(3t) ) + x * (-sec^2(3 t)) = -3 sin(3 t) cot(3 t) + cos(3 t) * (-sec^2(3 t) ), which could also be simplified but is clearly equal to the previous expression. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): dz/dt = dz/dx dx/dt + dz/dy dy/dt dz/dx = x = cos(3t)
.............................................
Given Solution: z = x^2 + y^2 = (u cos(v))^2 + (u + v^2) ^ 2 = u^2 cos^2(v) + u^2 + 2 u v^2 + v^4. So z_u = 2 u cos^2(v) + 2 u + 2 v^2 and z_v = -2 u^2 cos(v) sin(v) + 4 u v + 4 v^3. Applying the chain rule: F_x = 2 x and F_y = 2 y. dx/du = cos(v), dx/dv = - u sin(v), dy/du = 1 and dy/dv = 2 v. Thus dz/du = dz/dx * dx/du + dz/dy * dy/du = 2 x * cos(v) * 2 v + 2 y * 1 = 2 u cos(v) * cos(v) + 2 (u + v^2) * 1. When simplified this agrees with our previous result z_u = 2 u cos^2(v) + 2 u + 2 v^2 . dz/dv works out in an analogous manner. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Find w_r where w = e^(x - y + 3z^2) and x = r + t - s, y = 3r - 2t, z = sin(rst). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: dw/dr = dw/dx*dx/dr + dw/dy*dy/dr + dw/dz*dz/dr = e^(x-y+3z^2)*1 - e^(x-y+3z^2)*3 + 6ze^(x-y+3z^2)*stcos(rst) = -2e^(x-y+3z^2) + 6stze^(x-y+3z^2)cos(rst) = 2e^(x-y+3z^2) * [3stzcos(rst) - 1] = 2e^[r+t-s-3r+2t+3sin^2(rst)] * [3stsin(rst)cos(rst) - 1] = 2e(-2r+3t-s+3sin^2(rst)) * [3stsin(rst)cos(rst) -1] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: w_r can be written dw/dr, and we have dw/dr = dw/dx dx/dr + dw/dy dy/dr + dw/dz dz/dr = e^(x - y + 3 z^2) * 1 - e^(x - y + 3 z^2) * 3 + 6 z e^(x - y + 3 z^2) * (r s) cos(r s t). Simplifying and substituting for x, y and z we get (-2 + 6 sin(rst) ) e^(-2 r + 3 t + 3 ( sin^2(rst)) ) &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think in the given solution dw/dz*dz/dr should be equal to 6ze^(x-y+3z^2)*(st) cos(r s t) also there should be an (-s) in the exponential ------------------------------------------------ Self-critique rating:3
.............................................
Given Solution: Regarding R, R1, R2 and R3 as functions of t, we take the t derivative of both sides and get -1/R^2 dR/dt = -1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt so that dR/dt = (-1/R1^2 d(R1)/dt -1/R2^2 d(R2)/dt -1/R3^2 d(R3)/dt) * R^2 Substituting the given values for the three resistances and the three rates of change we get dR/dt = (-1 / (150 ohms)^2 * (-3 ohms/sec) - 1 / (300 ohms) * (+4 ohms/sec) - 1 / (450 ohms) * (-3 ohms/sec) ) * R^2 = 7 / (67500 ohm sec) * (900/11 ohms) ^2 = .69 ohms / sec, approx.. You can verify that for the given values of R1, R2 and R3 we get R = 900/11. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Had the right idea, just didn't do it with respect to time. 1/R derivative is 1/R^2 I understand the problem. ------------------------------------------------ Self-critique rating: 3" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!