course Phy 202 푵ţassignment #007
......!!!!!!!!...................................
21:17:06 Query introductory problems set 54 #'s 1-7. Explain how to obtain the magnetic field due to a given current through a small current segment, and how the position of a point with respect to the segment affects the result.
......!!!!!!!!...................................
RESPONSE --> The equation B = k'(IL)/r^2 is used to solve this equation, IL being the source of the field. The magnetic field depends not only on the distance of the segment from the source, but also on its directional relationship to the direction of the current.
.................................................
......!!!!!!!!...................................
21:17:48 ** IL is the source. The law is basically an inverse square law and the angle theta between IL and the vector r from the source to the point also has an effect so that the field is B = k ' I L / r^2 * sin(theta). **
......!!!!!!!!...................................
RESPONSE --> That is much more simply put. I have a better understanding after reading this.
.................................................
......!!!!!!!!...................................
21:20:27 Query principles and general college physics problem 17.34: How much charge flows from each terminal of 7.00 microF capacitor when connected to 12.0 volt battery?
......!!!!!!!!...................................
RESPONSE --> Q = VC; V = 12.0 V; C = 7*10^-6 F Q = (12.0 V)*(7*10^-6 F) = 8.4*10^-5 C
.................................................
......!!!!!!!!...................................
21:23:33 Capacitance is stored charge per unit of voltage: C = Q / V. Thus the stored charge is Q = C * V, and the battery will have the effect of transferring charge of magnitude Q = C * V = 7.00 microF * 12.0 volts = 7.00 microC / volt * 12.0 volts = 84.0 microC of charge.{}{}This would be accomplished the the flow of 84.0 microC of positive charge from the positive terminal, or a flow of -84.0 microC of charge from the negative terminal. Conventional batteries in conventional circuits transfer negative charges.
......!!!!!!!!...................................
RESPONSE --> Microfarads can be placed directly into that equation? I converted it to Farads, which I think was my only mistake.
.................................................
......!!!!!!!!...................................
21:29:27 Explain how to obtain the magnetic field due to a circular loop at the center of the loop.
......!!!!!!!!...................................
RESPONSE --> flux = B*A The area of the circle is first found (hopefully the radius or diameter and the flux are given) and the above equation is solved for B, magnetic field in Tesla.
.................................................
......!!!!!!!!...................................
22:22:57 ** For current running in a circular loop: Each small increment `dL of the loop is a source I `dL. The vector from `dL to the center of the loop has magnitude r, where r is the radius of the loop, and is perpendicular to the loop so the contribution of increment * `dL to the field is k ' I `dL / r^2 sin(90 deg) = I `dL / r^2, where r is the radius of the loop. The field is either upward or downward by the right-hand rule, depending on whether the current runs counterclockwise or clockwise, respectively. The field has this direction regardless of where the increment is located. The sum of the fields from all the increments therefore has magnitude B = sum(k ' I `dL / r^2), where the summation occurs around the entire loop. I and r are constants so the sum is B = k ' I / r^2 sum(`dL). The sum of all the length increments around the loop is the circumference 2 pi r of the loop so we have B = 2 pi r k ' I / r^2 = 2 pi k ' I / r. **
......!!!!!!!!...................................
RESPONSE --> Umm, my thinking was totally wrong. Maybe I misread the question? I'll have to refer back to this. IL, r is radius, perpedicular to the loop. k' (I dL) / r^2. B = 2 pi r k ' I / r^2 = 2 pi k ' l / r
.................................................
......!!!!!!!!...................................
22:33:07 Query magnetic fields produced by electric currents. What evidence do we have that electric currents produce magnetic fields?
......!!!!!!!!...................................
RESPONSE --> Oersted first found that an electric current produces a magnetic field when a compass needle was deflected when placed near a current-carrying wire.
.................................................
......!!!!!!!!...................................
22:33:43 STUDENT RESPONSE: We do have evidence that electric currents produce magnetic fields. This is observed in engineering when laying current carrying wires next to each other. The current carrying wires produce magnetic fields that may affect other wires or possibly metal objects that are near them. This is evident in the video experiment. When Dave placed the metal ball near the coil of wires and turned the generator to produce current in the wires the ball moved toward the coil. This means that there was an attraction toward the coil which in this case was a magnetic field. INSTRUCTOR COMMENT: Good observations. A very specific observation that should be included is that a compass placed over a conducting strip or wire initially oriented in the North-South direction will be deflected toward the East-West direction. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:37:08 How is the direction of an electric current related to the direction of the magnetic field that results?
......!!!!!!!!...................................
RESPONSE --> The resulting magnetic field is in a direction that is tangent to circular magnetic field lines surrounding a wire. The right-hand rule can be used as if the wire is being held so that the thumb points in the direction of the positive current, and the fingers will circle the wire in the direction of the magnetic field. The electric current direction runs tangent to the point of the circle.
.................................................
......!!!!!!!!...................................
22:38:24 ** GOOD STUDENT RESPONSE: The direction of the magnetic field relative to the direction of the electric current can be described using the right hand rule. This means simply using your right hand as a model you hold it so that your thumb is extended and your four fingers are flexed as if you were holding a cylinder. In this model, your thumb represents the direction of the electric current in the wire and the flexed fingers represent the direction of the magnetic field due to the current. In the case of the experiment the wire was in a coil so the magnetic field goes through the hole in the middle in one direction. **
......!!!!!!!!...................................
RESPONSE --> I added information that didn't make sense. The right-hand rule is the best method for determing the direction of the magnetic field relative to the electric current.
.................................................
......!!!!!!!!...................................
22:42:11 Query problem 17.35 What would be the area of a .20 F capacitor if plates are separated by 2.2 mm of air?
......!!!!!!!!...................................
RESPONSE --> C = p*(A/d) (p - permittivity of free space) A= (Cd)/p A = (.20 F * .0022 m)/ (8.85*10^-12 C^2/Nm^2) A = 5.0*10^7 m^2
.................................................
......!!!!!!!!...................................
22:42:46 ** If a parallel-plate capacitor holds charge Q and the plates are separated by air, which has dielectric constant very close to 1, then the electric field between the plates is E = 4 pi k sigma = 4 pi k Q / A, obtained by applying Gauss' Law to each plate. The voltage between the plates is therefore V = E * d, where d is the separation. The capacitance is C = Q / V = Q / (4 pi k Q / A * d) = A / (4 pi k d). Solving this formula C = A / (4 pi k d) for A for the area we get A = 4 pi k d * C If capacitance is C = .20 F and the plates are separated by 2.2 mm = .0022 m we therefore have A = 4 pi k d * C = 4 pi * 9 * 10^9 N m^2 / C^2 * .20 C / V * .0022 m = 5 * 10^7 N m^2 / C^2 * C / ( J / C) * m = 5 * 10^7 N m^2 / (N m) * m = 5 * 10^7 m^2. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:51:36 Query problem 17.50 charge Q on capacitor; separation halved as dielectric with const K inserted; by what factor does the energy storage change? Compare the new electric field with the old.
......!!!!!!!!...................................
RESPONSE --> I'm not sure I understood this one but I think the energy storage (C) would increase by a factor of 2. The new electric field is half as large in magnitude as it was? I'm not sure. I look forward to the explanation.
.................................................
......!!!!!!!!...................................
22:54:30 Note that the problem in the latest version of the text doubles rather than halves the separation. The solution for the halved separation, given here, should help you assess whether your solution was correct, and if not should help you construct a detailed and valid self-critique. ** For a capacitor we know the following: Electric field is independent of separation, as long as we don't have some huge separation. Voltage is work / unit charge to move from one plate to the other, which is force / unit charge * distance between plates, or electric field * distance. That is, V = E * d. Capacitance is Q / V, ration of charge to voltage. Energy stored is .5 Q^2 / C, which is just the work required to move charge Q across the plates with the 'average' voltage .5 Q / C (also obtained by integrating `dW = `dQ * V = `dq * q / C from q=0 to q = Q). The dielectric increases capacitance by reducing the electric field, which thereby reduces the voltage between plates. The electric field will be 1 / k times as great, meaning 1/k times the voltage at any given separation. C will increase by factor k due to dielectric, and will also increase by factor 2 due to halving of the distance. This is because the electric field is independent of the distance between plates, so halving the distance will halve the voltage between the plates. Since C = Q / V, this halving of the denominator will double C. Thus the capacitance increases by factor 2 k, which will decrease .5 Q^2 / C, the energy stored, by factor 2 k. **
......!!!!!!!!...................................
RESPONSE --> My assessment of electic field would have been correct if applied to the Voltage. As it is, it is incorrect since Electric field is independent of separation.
.................................................
......!!!!!!!!...................................
22:54:33 ......!!!!!!!!...................................
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:54:38 query univ 24.50 (25.36 10th edition). Parallel plates 16 cm square 4.7 mm apart connected to a 12 volt battery. What is the capacitance of this capacitor?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:54:43 ** Fundamental principles include the fact that the electric field is very neary constant between parallel plates, the voltage is equal to field * separation, electric field from a single plate is 2 pi k sigma, the work required to displace a charge is equal to charge * ave voltage, and capacitance is charge / voltage. Using these principles we reason out the problem as follows: If the 4.7 mm separation experiences a 12 V potential difference then the electric field is E = 12 V / (4.7 mm) = 12 V / (.0047 m) = 2550 V / m, approx. Since the electric field of a plane charge distribution with density sigma is 2 pi k sigma, and since the electric field is created by two plates with equal opposite charge density, the field of the capacitor is 4 pi k sigma. So we have 4 pi k sigma = 2250 V / m and sigma = 2250 V / m / (4 pi k) = 2250 V / m / (4 pi * 9 * 10^9 N m^2 / C^2) = 2.25 * 10^-8 C / m^2. The area of the plate is .0256 m^2 so the charge on a plate is .0256 m^2 * 2.25 * 10^-8 C / m^2 = 5.76 * 10^-10 C. The capacitance is C = Q / V = 5.67 * 10^-10 C / (12 V) = 4.7 * 10^-11 C / V = 4.7 * 10^-11 Farads. The energy stored in the capacitor is equal to the work required to move this charge from one plate to another, starting with an initially uncharged capacitor. The work to move a charge Q across an average potential difference Vave is Vave * Q. Since the voltage across the capacitor increases linearly with charge the average voltage is half the final voltage, so we have vAve = V / 2, with V = 12 V. So the energy is energy = vAve * Q = 12 V / 2 * (5.76 * 10^-10 C) = 3.4 * 10^-9 V / m * C. Since the unit V / m * C is the same as J / C * C = J, we see that the energy is 3.4 * 10^-9 J. Pulling the plates twice as far apart while maintaining the same voltage would cut the electric field in half (the voltage is the same but charge has to move twice as far). This would imply half the charge density, half the charge and therefore half the capacitance. Since we are moving only half the charge through the same average potential difference we use only 1/2 the energy. Note that the work to move charge `dq across the capacitor when the charge on the capacitor is `dq * V = `dq * (q / C), so to obtain the work required to charge the capacitor we integrate q / C with respect to q from q = 0 to q = Q, where Q is the final charge. The antiderivative is q^2 / ( 2 C ) so the definite integral is Q^2 / ( 2 C). This is the same result obtained using average voltage and charge, which yields V / 2 * Q = (Q / C) / 2 * Q = Q^2 / (2 C) Integration is necessary for cylindrical and spherical capacitors and other capacitors which are not in a parallel-plate configuration. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:54:46 query univ 24.51 (25.37 10th edition). Parallel plates 16 cm square 4.7 mm apart connected to a 12 volt battery. If the battery remains connected and plates are pulled to separation 9.4 mm then what are the capacitance, charge of each plate, electric field, energy stored?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:54:49 The potential difference between the plates is originally 12 volts. 12 volts over a 4.7 mm separation implies electric field = potential gradient = 12 V / (.0047 m) = 2500 J / m = 2500 N / C, approx.. The electric field is E = 4 pi k * sigma = 4 pi k * Q / A so we have Q = E * A / ( 4 pi k) = 2500 N / C * (.16 m)^2 / (4 * pi * 9 * 10^9 N m^2 / C^2) = 5.7 * 10^-7 N / C * m^2 / (N m^2 / C^2) = 5.7 * 10^-10 C, approx.. The energy stored is E = 1/2 Q V = 1/2 * 5.6 * 10^-10 C * 12 J / C = 3.36 * 10^-9 J. If the battery remains connected then if the plate separation is doubled the voltage will remain the same, while the potential gradient and hence the field will be halved. This will halve the charge on the plates, giving us half the capacitance. So we end up with a charge of about 2.8 * 10^-10 C, and a field of about 1250 N / C. The energy stored will also be halved, since V remains the same but Q is halved.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:54:52 query univ 24.68 (25.52 10th edition). Solid conducting sphere radius R charge Q. What is the electric-field energy density at distance r < R from the center of the sphere? What is the electric-field energy density at distance r > R from the center of the sphere?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:54:55 ** The idea is that we have to integrate the energy density over all space. We'll do this by finding the total energy in a thin spherical shell of radius r and thickness `dr, using this result to obtain an expression we integrate from R to infinity, noting that the field of the conducting sphere is zero for r < R. Then we can integrate to find the work required to assemble the charge on the surface of the sphere and we'll find that the two results are equal. Energy density, defined by dividing the energy .5 C V^2 required to charge a parallel-plate capacitor by the volume occupied by its electric field, is Energy density = .5 C V^2 / (volume) = .5 C V^2 / (d * A), where d is the separation of the plates and A the area of the plates. Since C = epsilon0 A / d and V = E * d this gives us .5 epsilon0 A / d * (E * d)^2 / (d * A) = .5 epsilon0 E^2 so that Energy density = .5 epsilon0 E^2, or in terms of k Energy density = 1 / (8 pi k) E^2, Since your text uses epsilon0 I'll do the same on this problem, where the epsilon0 notation makes a good deal of sense: For the charged sphere we have for r > R E = Q / (4 pi epsilon0 r^2), and therefore energy density = .5 epsilon0 E^2 = .5 epsilon0 Q^2 / (16 pi^2 epsilon0^2 r^4) = Q^2 / (32 pi^2 epsilon0 r^4). The energy density between r and r + `dr is nearly constant if `dr is small, with energy density approximately Q^2 / (32 pi^2 epsilon0 r^4). The volume of space between r and r + `dr is approximately A * `dr = 4 pi r^2 `dr. The expression for the energy lying between distance r and r + `dr is therefore approximately energy density * volume = Q^2 / (32 pi^2 epsilon0 r^4) * 4 pi r^2 `dr = Q^2 / (8 pi epsilon0 r^2) `dr. This leads to a Riemann sum over radius r; as we let `dr approach zero we approach an integral with integrand Q^2 / (8 pi epsilon0 r^2), integrated with respect to r. To get the energy between two radii we therefore integrate this expression between those two radii. If we integrate this expression from r = R to infinity we get the total energy of the field of the charged sphere. This integral gives us Q^2 / (8 pi epsilon0 R), which is the same as k Q^2 / (2 R). The work required to bring a charge `dq from infinity to a sphere containing charge q is k q / R `dq, leading to the integral of k q / R with respect to q. If we integrate from q = 0 to q = Q we get the total work required to charge the sphere. Our antiderivative is k (q^2 / 2) / r. If we evaluate this antiderivative at lower limit 0 and upper limit Q we get k Q^2 / (2 R). Since k = 1 / (4 pi epsilon0) the work is k Q^2 / (2 R) = k Q^2 / (8 pi epsilon0 R). So the energy in the field is equal to the work required to assemble the charge distribution. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
22:54:58
......!!!!!!!!...................................
RESPONSE -->
.................................................
Ȭ|δɗŵỆ assignment #008 008. `Query 29 Physics II 10-05-2007
......!!!!!!!!...................................
22:58:49 Query introductory problem set 54 #'s 8-13 Explain how to determine the magnetic flux of a uniform magnetic field through a plane loop of wire, and explain how the direction of the field and the direction of a line perpendicular to the plane of the region affect the result.
......!!!!!!!!...................................
RESPONSE --> The flux is determined by using the formula flux = B*A when the field is perpendicular to the plane of the loop. If there is an angle other than 90 degrees between the field and the plane of the loop, the flux changes by a factor of (cos(theta)).
.................................................
......!!!!!!!!...................................
22:59:06 To do this we need to simply find the area of the plane loop of wire. If we are given the radius we can find the area using Pi * r ^2 Then we multiply the area of the loop (In square meters ) by the strength of the field (in tesla). This will give us the strength of the flux if the plane of the loop is perpendicular to the field. If the perpendicular to the loop is at some nonzero angle with the field, then we multiply the previous result by the cosine of the angle.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:03:06 Explain how to determine the average rate of change of magnetic flux due to a uniform magnetic field through a plane loop of wire, as the loop is rotated in a given time interval from an orientation perpendicular to the magnetic field to an orientation parallel to the magnetic field.
......!!!!!!!!...................................
RESPONSE --> This can be determined because we know that when the magnetic field is at a 90 degree angle to the plane of the loop the flux is maximized, and when they are parallel the flux is 0. Therefore given the factors of rate of rotation, area (or radius or side length to determine area), and magnetic field, the average rate of flux can be determined by dividing the change in flux by the change in time between 90 degrees and 180 degrees in the rotation. This result is applicable for the entire rotation since the magnetic field is uniform.
.................................................
......!!!!!!!!...................................
23:03:22 ** EXPLANATION BY STUDENT: The first thing that we need to do is again use Pi * r ^ 2 to find the area of the loop. Then we multiply the area of the loop (m^2) by the strength of the field (testla) to find the flux when the loop is perpendicular to the field. Then we do the same thing for when the loop is parallel to the field, and since the cos of zero degrees is zero, the flux when the loop is parallel to the field is zero. This makes sense because at this orientation the loop will pick up none of the magnetic field. So now we have Flux 1 and Flux 2 being when the loop is perpendicular and parallel, respectively. So if we subtract Flux 2 from flux 1 and divide this value by the given time in seconds, we will have the average rate of change of magnetic flux. If we use MKS units this value will be in Tesla m^2 / sec = volts. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:32:10 Explain how alternating current is produced by rotating a coil of wire with respect to a uniform magnetic field.
......!!!!!!!!...................................
RESPONSE --> In the example of the generator in the book, many loops of wire of connected to an armature that the uniform magnetic field drives to rotate, thereby moving the wire loops to rotate. Two wires will change places every half-turn. The equation used for this is: emf = B * length of wire * velocity or emf = B * length of wire * velocity * sin(theta) where theta is the angle the face of the loop makes with the vertical axis. I hope this is close to correct because I had a hard time figuring it out.
.................................................
......!!!!!!!!...................................
23:33:31 ** STUDENT RESPONSE WITH INSTRUCTOR COMMENT: Y ou rotate a coil of wire end over end inside a uniform magnetic field. When the coil is parallel to the magnetic field, then there is no magnetic flux, and the current will be zero. But then when the coil is perpendicular to the field or at 90 degrees to the field then the flux will be strongest and the current will be moving in one direction. Then when the coil is parallel again at 180 degrees then the flux and the current will be zero. Then when the coil is perpendicular again at 270 degrees, then the flux will be at its strongest again but it will be in the opposite direction as when the coil was at 90 degrees. So therefore at 90 degrees the current will be moving in one direction and at 270 degrees the current will be moving with the same magnitude but in the opposite direction. COMMENT: Good. The changing magnetic flux produces voltage, which in turn produces current. **
......!!!!!!!!...................................
RESPONSE --> Oh, wow. I definitely looked up and tried to understand ac current. This analysis makes sense since we already knew most components from previous analysis.
.................................................
......!!!!!!!!...................................
23:44:26 Query Principles and General College Physics 18.04. 120V toaster with 4.2 amp current. What is the resistance?
......!!!!!!!!...................................
RESPONSE --> V = IR R = V/I I = 4.2 A; V = 120 V R = 120 V/4.2 A R = 28.6 Ohms
.................................................
......!!!!!!!!...................................
23:44:45 current = voltage / resistance (Ohm's Law). The common sense of this is that for a given voltage, less resistance implies greater current while for given resistance, greater voltage implies greater current. More specifically, current is directly proportional to voltage and inversely proportional to resistance. In symbols this relationship is expressed as I = V / R.{}{}In this case we know the current and the voltage and wish to find the resistance. Simple algebra gives us R = V / I. Substituting our known current and voltage we obtain {}{}R = 120 volts / 4.2 amps = 29 ohms, approximately.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
23:46:46 Query Principles and General College Physics 18.28. Max instantaneous voltage to a 2.7 kOhm resistor rated at 1/4 watt.
......!!!!!!!!...................................
RESPONSE --> R = 2700 Ohms; P = .25 W V = sq rt(2700 Ohms * .25 W) V = 26.0 V
.................................................
......!!!!!!!!...................................
23:46:58 Voltage is energy per unit of charge, measured in Joules / Coulomb. {}Current is charge / unit of time, measured in amps or Coulombs / second.{}Power is energy / unit of time measured in Joules / second.{}{}The three are related in a way that is obvious from the meanings of the terms. If we multiply Joules / Coulomb by Coulombs / second we get Joules / second, so voltage * current = power. In symbols this is power = V * I.{}{}Ohm's Law tells us that current = voltage / resistance.In symbols this is I = V / R. So our power relationship power = V * I can be written {}{}power = V * V / R = V^2 / R. {}{}Using this relationship we find that {}{}V = sqrt(power * R), so in this case the maximum voltage (which will produce the 1/4 watt maximum power) will be{}{}V = sqrt(1/4 watt * 2.7 * 10^3 ohms) = 26 volts.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
00:41:14 Query general college physics problem 18.39; compare power loss if 520 kW delivered at 50kV as opposed to 12 kV thru 3 ohm resistance.** The current will not be the same at both voltages. It is important to understand that power (J / s) is the product of current (C / s) and voltage (J / C). So the current at 50 kV kW will be less than 1/4 the current at 12 kV. To deliver 520 kW = 520,000 J / s at 50 kV = 50,000 J / C requires current I = 520,000 J/s / (50,000 J/C) = 10.4 amps. This demonstrates the meaning of the formula P = I V. To deliver 520 kW = 520,000 J / s at 12 kV = 12,000 J / C requires current I = 520,000 J/s / (12,000 J/C) = 43.3 amps. The voltage drops through the 3 Ohm resistance will be calculated as the product of the current and the resistance, V = I * R: The 10.4 amp current will result in a voltage drop of 10.4 amp * 3 ohms = 31.2 volts. The 43.3 amp current will result in a voltage drop of 40.3 amp * 3 ohms = 130 volts. The power loss through the transmission wire is the product of the voltage ( J / C ) and the current (J / S) so we obtain power losses as follows: At 520 kV the power loss is 31.2 J / C * 10.4 C / s = 325 watts, approx. At 12 kV the power loss is 130 J / C * 43.3 C / s = 6500 watts, approx. Note that the power loss in the transmission wire is not equal to the power delivered by the circuit, which is lost through a number of parallel connections to individual homes, businesses, etc.. The entire analysis can be done by simple formulas but without completely understanding the meaning of voltage, current, resistance, power and their relationships it is very easy to get the wrong quantities in the wrong places, and especially to confuse the power delivered with the power loss. The analysis boils down to this: I = P / V, where P is the power delivered. Ploss = I^2 R, where R is the resistance of the circuit and Ploss is the power loss of the circuit. So Ploss = I^2 * R = (P/V)^2 * R = P^2 * R / V^2. This shows that power loss across a fixed resistance is inversely proportional to square of the voltage. So that the final voltage, which is less than 1/4 the original voltage, implies more than 16 times the power loss. A quicker solution through proportionalities: For any given resistance power loss is proportional to the square of the current. For given power delivery current is inversely proportional to voltage. So power loss is proportional to the inverse square of the voltage. In this case the voltage ratio is 50 kV / (12 kV) = 4.17 approx., so the ratio of power losses is about 1 / 4.17^2 = 1 / 16.5 = .06. Note that this is the same approximate ratio you would get if you divided your 324.5 watts by 5624.7 watts. **
......!!!!!!!!...................................
RESPONSE --> I = P / V I = 520000 W / 50000 V I = 10.4 A I = 520000 W / 12000 V I = 43.3 A V = I * R V = 10.4 A * 3 Ohms V = 31.2 V V = 43.3 A * 3 Ohms V = 130 V I didn't understand power loss, but hopefully this will help. power loss = I * V PL = 10.4 A * 31.2 V PL = 324 W PL = 43.3 A * 130 V PL = 5629 W (where did 6500 come from?) I will definitely have to refer back to this solution.
.................................................
......!!!!!!!!...................................
00:41:19 Query univ 25.62 (26.50 10th edition) rectangular block d x 2d x 3d, potential difference V. To which faces should the voltage be applied to attain maximum current density and what is the density?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
00:41:22 ** First note that the current I is different for diferent faces. The resistance of the block is proportional to the distance between faces and inversely proportional to the area, so current is proportional to the area and inversely proportional to the distance between faces. Current density is proportional to current and inversely proportional to the area of the face, so current density is proportional to area and inversely proportional to the distance between faces and to area, leaving current inversely proportional to distance between faces. For the faces measuring d x 2d we have resistance R = rho * L / A = rho * (3d) / (2 d^2) = 3 / 2 rho / d so current is I = V / R = V / (3/2 rho / d) = 2d V / (3 rho). Current density is I / A = (2 d V / (3 rho) ) / (2 d^2) = V / (3 rho d) = 1/3 V / (rho d). For the faces measuring d x 3d we have resistance R = rho * L / A = rho * (2d) / (3 d^2) = 2 / 3 rho / d so current is I = V / R = V / (2/3 rho / d) = 3 d V / (2 rho). Current density is I / A = (3 d V / (2 rho) ) / (3 d^2) = V / (2 rho d) = 1/2 V / (rho d). For the faces measuring 3d x 2d we have resistance R = rho * L / A = rho * (d) / (6 d^2) = 1 / 6 rho / d so current is I = V / R = V / (1/6 rho / d) = 6 d V / (rho). Current density is I / A = (6 d V / (rho) ) / (6 d^2) = V / (rho d) = V / (rho d). Max current density therefore occurs when the voltage is applied to the largest face. **
......!!!!!!!!...................................
RESPONSE -->
.................................................