course PHY 121
06/08 2315
ph1 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.
Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.
Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.
*********************************************
Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.
Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:
• The lack of precision of the TIMER program.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
The timer program can only be so accurate due to the limitations of the program and how the computer counts.
#$&*
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
The human brain may trigger a response measured in thousandths of a second, but the muscle movement cannot match that and the human eye can only process information so fast as well.
#$&*
• Actual differences in the time required for the object to travel the same distance.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
I think that the release of the holding mechanism could easily account for part of the time difference as well as the triggering of the TIMER. The object could also met a greater friction for some of the rolls as well.
#$&*
• Differences in positioning the object prior to release.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
If you position the object farther back, it will allow for a greater build up of speed. If it is moved forward, it will not allow it to gain as much speed.
#$&*
• Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This would go with the triggering of the TIMER to stop causing a difference in time variables.
#$&*
*********************************************
Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?
• The lack of precision of the TIMER program.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This would cause the least amount of uncertainty.
#$&*
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This would probably be the greatest cause of uncertainty due to the muscle reaction time.
#$&*
• Actual differences in the time required for the object to travel the same distance.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This could be mitigated to a very small amount if you paid close attention to the starting point determined in the experiment.
#$&*
• Differences in positioning the object prior to release.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This also could be mostly reduced if careful attention is paid to the placement of the object.
#$&*
• Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This would cause a fairly large uncertainty because of the hand eye coordination required to see the object clear the end of the incline and then tell the brain to tell the finger to trigger the TIMER to stop.
#$&*
*********************************************
Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.
• The lack of precision of the TIMER program.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
There is not much you can do with this unless you were to get a precision instrument.
#$&*
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This is not going to improve unless you got some sort of electronic sensor that recognized the object rolling past it and triggered the TIMER for you.
#$&*
• Actual differences in the time required for the object to travel the same distance.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
This would be mitigated if you used a sensor for timing and some sort of mechanical release that was linked to an electronic sensor setup to monitor the start and stop of the object.
#$&*
• Differences in positioning the object prior to release.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
The use of a mechanical release would help to be more accurate.
#$&*
• Human uncertainty in observing exactly when the object reached the end of the incline.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Again, using some sort of an eye to sense when the object rolls past to trigger the TIMER would fix this problem.
#$&*
*********************************************
Question: If, as in the object-down-an-incline experiment, you know the distance an object rolls down an incline and the time required, explain how you will use this information to find the object 's average speed on the incline.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
You would take the distance the object has to roll and divide it by the time it takes the object make a single pass. After doing a set number of passes, you would add the times together and divide that by the total number of passes.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: If an object travels 40 centimeters down an incline in 5 seconds then what is its average velocity on the incline? Explain how your answer is connected to your experience.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
It would be a velocity of 8 cm’s a second. I am not sure of what experience you are referring too here.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: If the same object requires 3 second to reach the halfway point, what is its average velocity on the first half of the incline and what is its average velocity on the second half?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
The average velocity on the first half would be 6.7 cm’s a second. The average velocity on the second half would be 10 cm’s a second.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qAccording to the results of your introductory pendulum experiment, do you think doubling the length of the pendulum will result in half the frequency (frequency can be thought of as the number of cycles per minute), more than half or less than half?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
It would result in less than half. Doubling the length of the pendulum is not going to take half of the frequency out because the angle of a cycle is still the same. The distance it travels may be more, but it still carries a great deal of momentum with it through the cycles.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qNote that for a graph of y vs. x, a point on the x axis has y coordinate zero and a point on the y axis has x coordinate zero. In your own words explain why this is so.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
Because it has not climbed up the ‘y’ axis or over on the ‘x’ axis depending on where the point is.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qOn a graph of frequency vs. pendulum length (where frequency is on the vertical axis and length on the horizontal), what would it mean for the graph to intersect the vertical axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the vertical axis)? What would this tell you about the length and frequency of the pendulum?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
It would mean the pendulum has no length. I feel it would not be possible to make this happen.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qOn a graph of frequency vs. pendulum length, what would it mean for the graph to intersect the horizontal axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the horizontal axis)? What would this tell you about the length and frequency of the pendulum?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
The pendulum would be so long that it could not swing. Again, I feel this is not possible.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qIf a ball rolls down between two points with an average velocity of 6 cm / sec, and if it takes 5 sec between the points, then how far apart are the points?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
They are approximately 30 cm’s apart.
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:
`aOn the average the ball moves 6 centimeters every second, so in 5 seconds it will move 30 cm.
The formal calculation goes like this:
• We know that vAve = `ds / `dt, where vAve is ave velocity, `ds is displacement and `dt is the time interval.
• It follows by algebraic rearrangement that `ds = vAve * `dt.
• We are told that vAve = 6 cm / sec and `dt = 5 sec. It therefore follows that
• `ds = 6 cm / sec * 5 sec = 30 (cm / sec) * sec = 30 cm.
The details of the algebraic rearrangement are as follows:
• vAve = `ds / `dt. We multiply both sides of the equation by `dt:
• vAve * `dt = `ds / `dt * `dt. We simplify to obtain
• vAve * `dt = `ds, which we then write as{}`ds = vAve *`dt
Be sure to address anything you do not fully understand in your self-critique.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
confidence rating #$&*
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qYou were asked to read the text and some of the problems at the end of the section. Tell your instructor about something in the text you understood up to a point but didn't understand fully. Explain what you did understand, and ask the best question you can about what you didn't understand.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
The first chapter seems pretty basic. I am terrible at doing the math required to figure out the length of a leg of a triangle. The height by triangulation proved to be fairly difficult. That is one thing I am going to have to work on.
Being aware of that, you should have little trouble reconciling it. However if this proves to be an ongoing problem, we will address it.
#$&*
"
Good responses. Let me know if you have questions.
#$&*