course Mth 174 ́E~c|N} f\\яyassignment #003
......!!!!!!!!...................................
06:06:24 query 6.5 #8 Galileo: time for unif accel object to traverse dist is same as if vel was ave of init and final; put into symbols and show why true
......!!!!!!!!...................................
RESPONSE --> a(t) = (v1+ v2)/2 I'm not sure how to show this is true. This problem really confused me.
.................................................
......!!!!!!!!...................................
06:06:45 how can you symbolically represent the give statement?
......!!!!!!!!...................................
RESPONSE --> Again I was confused with this question.
.................................................
......!!!!!!!!...................................
06:06:49 How can we show that the statement is true?
......!!!!!!!!...................................
RESPONSE --> Again I was confused with this question.
.................................................
......!!!!!!!!...................................
06:06:52 How can we use a graph to show that the statement is true?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
10:22:32 what did you get for the integral and how did you reason out your result?
......!!!!!!!!...................................
RESPONSE --> u = cos(3t) du = -3sin(3t)dt -(1/3)du = sin(3t)dt int['sqrt(cos(3t) ) * sin(3t)] -(1/3)int['sqrt(u)]du -(1/3)*(2/3) u^(3/2) + c -(2/9) (cos(3t))^(3/2) + c
.................................................
......!!!!!!!!...................................
10:25:30 what is the antiderivative?
......!!!!!!!!...................................
RESPONSE --> int[(x^2)(e^(x^(3)+1))dx u = x^3 + 1 du = 3x^2 dx (1/3)du = x^2 dx (1/3) int [e^u] du (1/3) e^u + c (1/3) e^(x^3 + 1) + c
.................................................
......!!!!!!!!...................................
10:25:43 What substitution would you use to find this antiderivative?
......!!!!!!!!...................................
RESPONSE --> u = x^3 + 1 du = 3x^2 dx (1/3)du = x^2 dx (1/3) int [e^u] du (1/3) e^u + c (1/3) e^(x^3 + 1) + c
.................................................
......!!!!!!!!...................................
10:38:35 what is the antiderivative?
......!!!!!!!!...................................
RESPONSE --> I'm not sure what to use as u. I tried t+1 and t^2. when I used u= t^2 du = 2tdt (1/2)tdu = dt (1/2)t int[((t+1)^2)/u) du 1/2 t + ln (t^2) I got stuck here. This isn't right, but I can't get the correct answer.
.................................................
......!!!!!!!!...................................
10:38:46 What substitution would you use to find this antiderivative?
......!!!!!!!!...................................
RESPONSE --> That's where i'm confused.
.................................................
......!!!!!!!!...................................
10:42:30 What did you get for the definite integral?
......!!!!!!!!...................................
RESPONSE --> u = t + 7 du = dt int[u^-2]du 1/u 1/(t+7) (1, 3) 1/10 - 1/8 = -1/40
.................................................
......!!!!!!!!...................................
10:42:39 What antiderivative did you use?
......!!!!!!!!...................................
RESPONSE --> int[u^-2]du 1/u 1/(t+7) (1, 3) 1/10 - 1/8 = -1/40
.................................................
......!!!!!!!!...................................
10:42:46 What is the value of your antiderivative at t = 1 and at t = 3?
......!!!!!!!!...................................
RESPONSE --> 1/(t+7) (1, 3) 1/10 - 1/8 = -1/40
.................................................
......!!!!!!!!...................................
10:44:25 What were the populations in 1990 and 2000?
......!!!!!!!!...................................
RESPONSE --> 1990 population is 5.3billion 2000 population is 6.1 billion
.................................................
......!!!!!!!!...................................
10:47:36 What is the average population between during the 1990's and how did you find it?
......!!!!!!!!...................................
RESPONSE --> int 5.3e^(0.014t) (0, 10) int 5.3e^(0.014*0) = 5.3 billion int 5.3e^(0.014*10) = 6.1 billion 6.1 billion - 5.3 billion = .8 billion
.................................................
......!!!!!!!!...................................
10:49:21 What is the value of your antiderivative at t = 1 and at t = 3?
......!!!!!!!!...................................
RESPONSE --> 0.8 billion work on last problem.
.................................................
"
You then start the process over with the next question, clicking on the Next Question/Solution button at top left, etc.