course Mth 174 06-25-2007......!!!!!!!!...................................
......!!!!!!!!...................................
RESPONSE --> antiderivative of sin^2 x u = sin x v = -cos x u' = cos x v' = sin x -sinx cosx + int(cos^2 x) -sinx cosx + int(1-sin^2 x) -sinx cosx + int(1) - int (sin^2 x) 2 int (sin^2 x) dx = -sin x cos x + int(1) dx -1/2 sin x cos x + 1/2 x + C
.................................................
......!!!!!!!!...................................
15:23:16 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> antiderivative of sin^2 x I used u & v... u = sin x v = -cos x u' = cos x v' = sin x Then, cos^2 x = 1 - sin^2 x, so I plugged that in for the cos^2 x... -sinx cosx + int(cos^2 x) -sinx cosx + int(1-sin^2 x) -sinx cosx + int(1) - int (sin^2 x) 2 int (sin^2 x) dx = -sin x cos x + int(1) dx -1/2 sin x cos x + 1/2 x + C
.................................................
......!!!!!!!!...................................
15:32:35 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> (t+2) `sqrt(2+3t) let u = t +1 and v = 3/6 (2+3t)^(3/2) u'= 1 v'= (2+3t)^(1/2) int [(t+2) `sqrt(2+3t)] = 3/6 (t+1) (2+3t)^(3/2) - int[1* 3/6 (2+3t)^(3/2)] 3/6 (t+1) (2+3t)^(3/2) - (3/6) int[(2+3t)^(3/2)] add one to 3/2 = 5/2 divide by 5/2 giving 3/6 * 2/5 = 6/30 = 1/5 3/6 (t+1) (2+3t)^(3/2) - 1/5 (2+3t)^(5/2)
.................................................
......!!!!!!!!...................................
15:32:45 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> (t+2) `sqrt(2+3t) let u = t +1 and v = 3/6 (2+3t)^(3/2) u'= 1 v'= (2+3t)^(1/2) int [(t+2) `sqrt(2+3t)] = 3/6 (t+1) (2+3t)^(3/2) - int[1* 3/6 (2+3t)^(3/2)] 3/6 (t+1) (2+3t)^(3/2) - (3/6) int[(2+3t)^(3/2)] add one to 3/2 = 5/2 divide by 5/2 giving 3/6 * 2/5 = 6/30 = 1/5 3/6 (t+1) (2+3t)^(3/2) - 1/5 (2+3t)^(5/2)
.................................................
......!!!!!!!!...................................
15:32:49 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
15:35:17 query problem 7.2.27 antiderivative of x^5 cos(x^3)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
16:03:57 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> int[x^5 cos(x^3)] let u = cos(x^3) and v = 1/6 x^6 u'= -3x^2sin(x^3) v' = x^5 1/3 x^3sin(x^3) - int [-3x^2 sin(x^3) * 1/6 x^6] 1/3 x^3sin(x^3) - 1/6 int [[-3x^2 sin(x^3) * 1/6 x^6] Here is the problem I run into every time...what to do with the [-3x^2 sin(x^3) * 1/6 x^6] - I don't get the answers to the questions to ever appear and I can't figure out why so I don't knwo what to do. Please help.
.................................................
......!!!!!!!!...................................
16:06:24 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> int x^5 cos(x^3) I got confused - but I tried u = x ^ 5 v = 1/(3x^2)sin(x^3 u' = 5x4 v' =cos(x^3) and u = cos(x^3) v = 1/6 x^6 u'= -3x^2 sin(x^3) v' = x^5
.................................................
......!!!!!!!!...................................
16:07:44 06-25-2007 16:07:44 query problem 7.2.52 (3d edition #50) f(0)=6, f(1) = 5, f'(1) = 2; find int( x f'', x, 0, 1).
......!!!!!!!!...................................
NOTES -------> f(0)=6, f(1) = 5, f'(1) = 2; find int( x f'', x, 0, 1). I'm not even sure where to begin with this and again - I cannot make the answers come up so I'm not sure how to help myself. Sorry.
.......................................................!!!!!!!!...................................
16:08:15 What is the value of the requested integral?
......!!!!!!!!...................................
RESPONSE --> again I'm not sure where to start - and the answers don't come up when after I click enter response then next question/answer.
.................................................
......!!!!!!!!...................................
16:08:31 How did you use integration by parts to obtain this result? Be specific.
......!!!!!!!!...................................
RESPONSE --> again I didn't get this and the answers don't come up.
.................................................
......!!!!!!!!...................................
16:09:09 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> I tried again in another Assignment and still the answers didn't come up.
.................................................
......!!!!!!!!...................................
16:09:13 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................
ßôylÖ~âËŽ‚ºkßÚ‹œ¿êzÔ|¿ assignment #004 ËWž‘ª˜ä¨ô¿“ÉJ€ìИZ¸è°Ç{ÿ`zdÕî’á Physics II 06-25-2007 "