course Mth 174 eױKassignment #017
......!!!!!!!!...................................
13:14:56 Query problem 11.1.10 Find a value of omega such that y '' + 9 y = 0 is satisfied by y = cos(omega * t).{}{}Give your solution.
......!!!!!!!!...................................
RESPONSE --> y = cos(omega*t) y' = -omega*sin(omega*t) y"" = -omega^2 * cos(omega*t) (d^2t)/(dt^2) + 9y = 0 -(omega)^2 * cos(omega*t) + 9cos(omega*t) = 0 -(omega)^2 + 9 = 0 -(omega)^2 = -9 omega = +/- 3
.................................................
......!!!!!!!!...................................
13:17:44 how did you show that the given function satisfies the given equation?
......!!!!!!!!...................................
RESPONSE --> P = 1/(1+e^(-t)) P' = (1+e^(-t))^(-2)
.................................................
......!!!!!!!!...................................
13:17:57 What is the derivative dP/dt?
......!!!!!!!!...................................
RESPONSE --> (dP)/(dt) = (1-P) 1/(1+e^(-t))*(1-(1/(1+e^(-t)))) = 1/(1+e^(-t)) - [1/(1+e^(-t))]^2
.................................................
......!!!!!!!!...................................
13:18:28 Query problem 11.1.16 (3d edition 11.1.15) (was 10.1.1) match equation with solution (cos x, cos(-x), x^2, e^x+e^-x, `sqrt(2x) )
......!!!!!!!!...................................
RESPONSE --> y = cosx -->
.................................................
......!!!!!!!!...................................
13:24:20 which solution(s) correspond to the equation y'' = y and how can you tell?
......!!!!!!!!...................................
RESPONSE --> (I) y = cosx y' = -sinx y"" = -cosx --> [d] y"" = -y (II) y = cos(-x) y' = sin(-x) y"" = -cos(-x) --> [d] y"" = -y (III) y = x^2 y' = 2x y"" = 2 --> [e] x^2 * y"" - 2y = 0 (IV) y - e^x + e^(-x) --> [c] y' = 1/y & [a] y''= y (V) y = sqrt(2x) y' = x(2x)^(-1/2) --> [c] y' = 1/y III because I found the derivatives
.................................................
......!!!!!!!!...................................
13:24:50 which solution(s) correspond to the equation y' = -y and how can you tell
......!!!!!!!!...................................
RESPONSE --> (I) y = cosx y' = -sinx y"" = -cosx --> [d] y"" = -y (II) y = cos(-x) y' = sin(-x) y"" = -cos(-x) --> [d] y"" = -y (III) y = x^2 y' = 2x y"" = 2 --> [e] x^2 * y"" - 2y = 0 (IV) y - e^x + e^(-x) --> [c] y' = 1/y & [a] y''= y (V) y = sqrt(2x) y' = x(2x)^(-1/2) --> [c] y' = 1/y none correspond to y'= -y
.................................................
......!!!!!!!!...................................
13:25:48 which solution(s) correspond to the equation y' = 1/y and how can you tell
......!!!!!!!!...................................
RESPONSE --> (I) y = cosx y' = -sinx y"" = -cosx --> [d] y"" = -y (II) y = cos(-x) y' = sin(-x) y"" = -cos(-x) --> [d] y"" = -y (III) y = x^2 y' = 2x y"" = 2 --> [e] x^2 * y"" - 2y = 0 (IV) y - e^x + e^(-x) --> [c] y' = 1/y & [a] y''= y (V) y = sqrt(2x) y' = 2*(2x)^(-1/2) --> [c] y' = 1/y y = sqrt (2x) i found the first derivative
.................................................
......!!!!!!!!...................................
13:26:18 which solution(s) correspond to the equation y''=-y and how can you tell
......!!!!!!!!...................................
RESPONSE --> (I) y = cosx y' = -sinx y"" = -cosx --> [d] y"" = -y (II) y = cos(-x) y' = sin(-x) y"" = -cos(-x) --> [d] y"" = -y (III) y = x^2 y' = 2x y"" = 2 --> [e] x^2 * y"" - 2y = 0 (IV) y - e^x + e^(-x) --> [c] y' = 1/y & [a] y''= y (V) y = sqrt(2x) y' = x(2x)^(-1/2) --> [c] y' = 1/y (I) y = cosx y' = -sinx y"" = -cosx --> [d] y"" = -y (II) y = cos(-x) y' = sin(-x) y"" = -cos(-x) --> [d] y"" = -y I know because I found their derivatives
.................................................
......!!!!!!!!...................................
13:27:14 which solution(s) correspond to the equation x^2 y'' - 2y = 0 and how can you tell
......!!!!!!!!...................................
RESPONSE --> y = x^2 i know because y' = 2x y""= 2 x^2(2) - 2(x^2) = 0
.................................................
......!!!!!!!!...................................
13:29:19 Query problem 11.2.5 (3d edition 11.2.4) The slope field is shown. Plot solutions through (0, 0) and (1, 4).{}{}Describe your graphs. Include in your description any asymptotes or inflection points, and also intervals where the graph is concave up or concave down.
......!!!!!!!!...................................
RESPONSE --> there is a horisontal asymptote at 10 the graph is horiazontal against x= 0 and then dependin on the slope curves a little then goes towards y = 10 the graph is concave up y>10 and concave down when y<10.
.................................................
......!!!!!!!!...................................
13:30:57 describe the slope field corresponding to y' = x e^-x
......!!!!!!!!...................................
RESPONSE --> y' = x e^-x they are all tending towards x = 3 there is a littls dib as it approaches y-axis then curves up from t-acis til x= 3
.................................................
......!!!!!!!!...................................
13:31:34 describe the slope field corresponding to y' = sin x
......!!!!!!!!...................................
RESPONSE --> y' = sin x it is the graph of -cosx and does not pass through (0,0)
.................................................
......!!!!!!!!...................................
13:31:58 describe the slope field corresponding to y' = cos x
......!!!!!!!!...................................
RESPONSE --> y' = cos x is the graph of sinx passes through (0,0)
.................................................
......!!!!!!!!...................................
13:32:50 describe the slope field corresponding to y' = x^2 e^-x
......!!!!!!!!...................................
RESPONSE --> y' = x^2 e^-x is the graph of -x^2e^(-x) it's concave down and has a horisontal asymptote around x=3
.................................................
......!!!!!!!!...................................
13:33:45 describe the slope field corresponding to y' = e^-(x^2)
......!!!!!!!!...................................
RESPONSE --> y' = e^-(x^2) is the graph of y = 02xe^(-x^2) the gpach is sriahg until it goes up appoximately 3 ten levels back out. it passes though (0,0)
.................................................
......!!!!!!!!...................................
13:34:29 describe the slope field corresponding to y' = e^-x
......!!!!!!!!...................................
RESPONSE --> y' = e^-x is the graph of y = -e^(-x) it is con cave down and has a veritcal asymptote around x = -2
.................................................
}Ŕ̈́ assignment #018 018. `query 18 Cal 2 08-01-2007
......!!!!!!!!...................................
13:38:04 what is your estimate of y(1)?
......!!!!!!!!...................................
RESPONSE --> y(1) = 0.5417
.................................................
......!!!!!!!!...................................
13:40:35 Describe how the given slope field is consistent with your step-by-step results.
......!!!!!!!!...................................
RESPONSE --> x y 0 0 .2 0.0016 .4 0.0656 .6 0.2813 .8 0.7710 1 0.5417
.................................................
......!!!!!!!!...................................
13:42:20 Is your approximation an overestimate or an underestimate, and what property of the slope field allows you to answer this question?
......!!!!!!!!...................................
RESPONSE --> over estimate
.................................................
......!!!!!!!!...................................
** If you follow the slope field starting at x = 0 and move to the right until you reach x = 1 your graph will at first remain almost flat, consistent with the fact that the values in the Euler approximation don't reach .1 until x has exceeded .6, then rise more and more quickly. The result y(1) = .448 is very plausible. **
.................................................
......!!!!!!!!...................................
13:44:18 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE --> B= 75e^(2-2t) + 25
.................................................
......!!!!!!!!...................................
13:47:21 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> B= 75e^(2-2t)+ 25 1 = 75e^(2-2t)+ 25 8/25 = e^(2-2t) ln(8/25) = (2-2t) lne -1.139 = 2-2t -3.139 = -2t t = 1.570
.................................................
......!!!!!!!!...................................
13:48:38 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE --> B= 75e^(2-2t)+ 25 dB/dt +2B = 50 dB + 2B = 50 dt
.................................................
......!!!!!!!!...................................
13:48:44 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
13:53:25 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE --> t dx.dt = (1 + 2 ln t ) tan x, 1st quadrant I was very confused on this problem I went round and round and couldn't get the antiderivative of t/(1+2lnt)
.................................................
......!!!!!!!!...................................
13:53:27 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
13:53:29 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
13:53:31 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE -->
.................................................
Jی걛EnEWÅ assignment #019 019. `query 19 Cal 2 08-01-2007
......!!!!!!!!...................................
13:54:54 what differential equation is satisfied by the amount of money in the account at time t since the original investment?
......!!!!!!!!...................................
RESPONSE --> M= 1000^r(t-2000)
.................................................
......!!!!!!!!...................................
13:56:38 What is the solution to the equation?
......!!!!!!!!...................................
RESPONSE --> dM/dt = 1000e^(r(t-2000)) 1/1000 dM = e^r(t-2000) dt M/1000 = e^(r(t-2000) ** Compare the details with the following: We separate variables to obtain dM / M = r * dt so that ln | M | = r * t + c and M = e^(r * t + c) = e^c * e^(r t), where c is an arbitrary real number. For any real c we have e^c > 0, and for any real number > 0 we can find c such that e^c is equal to that real number (c is just the natural log of the desired positive number). So we can replace e^c with A, where it is understood that A > 0. We obtain general solution M = A e^(r t) with A > 0. Specifically we have M ( 0 ) = 1000 so that 1000 = A e^(r * 0), which tells us that 1000 = A. So our function is M(t) = 1000 e^(r t). **
.................................................
......!!!!!!!!...................................
14:00:17 Describe your sketches of the solution for interest rates of 5% and 10%.
......!!!!!!!!...................................
RESPONSE --> dM/dt = 1000e^(r(t-2000) 1000e^(0.05(2030-2000))= $4481.70 1000e^(0.1(2030-2000))= $200085.54 the 5% graph grows much more slowly than than 10% graph.
.................................................
......!!!!!!!!...................................
14:00:55 Does the doubled interest rate imply twice the increase in principle?
......!!!!!!!!...................................
RESPONSE --> Very close, yes ** We see that at t = 1 the doubled interest rate r = .10 results in an increase of $105.17 in principle, which is more than twice the $51.27 increase we get for r = .05. **
.................................................
......!!!!!!!!...................................
14:05:11 Query problem 11.5.22 (3d edition 11.5.20) At 1 pm power goes out with house at 68 F. At 10 pm outside temperature is 10 F and inside it's 57 F. {}{}Give the differential equation you would solve to obtain temperature as a function of time.{}{}Solve the equation to find the temperature at 7 am.
......!!!!!!!!...................................
RESPONSE --> dH/dt = -k (H-10) H-10 = Be^(-kt) 68-58e^(-k7) 1.1724 = e ^(-7k) ln(1.1724) = -7klne .1591 = -7k -0.02 = k
.................................................
......!!!!!!!!...................................
14:05:23 What assumption did you make about outside temperature, and how would your prediction of the 7 am temperature change if you refined your assumption?
......!!!!!!!!...................................
RESPONSE --> that it was zero
.................................................
......!!!!!!!!...................................
14:12:05 Query problem 11.6.25 (3d edition 11.6.20) F = m g R^2 / (R + h)^2.{}{}Find the differential equation for dv/dt and show that the Chain Rule dv/dt = dv/dh * dh/dt gives you v dv/dh = -gR^2/(R+h)^2.{}{}Solve the differential equation, and use your solution to find escape velocity.{}{}Give your solution.
......!!!!!!!!...................................
RESPONSE --> This problem really confused me from the begining. I' no sure how to respond to what it's asking. Query problem 11.6.25 (3d edition 11.6.20) F = m g R^2 / (R + h)^2. Find the differential equation for dv/dt and show that the Chain Rule dv/dt = dv/dh * dh/dt gives you v dv/dh = -gR^2/(R+h)^2. Solve the differential equation, and use your solution to find escape velocity. Give your solution.
.................................................
......!!!!!!!!...................................
14:15:06 How the you determine the nature of the resulting long-term expansion of the universe, and what is your conclusion?
......!!!!!!!!...................................
RESPONSE --> I got hte problems at the beginning and the ones you gave have thrown me can you help explain this one also. Thanks. rate of expansion of universe: (R')^2 = 2 G M0 / R + C; case C = 0 what is your solution to the differential equation R' = `sqrt( 2 G M0 / R ), R(0) = 0?
.................................................