......!!!!!!!!...................................
17:26:22 Query 12.1.6 8 girls 5 boys What is the probability that the first chosen is a girl?
......!!!!!!!!...................................
RESPONSE --> 8 in 13 is the probabiltiy of a girl
.................................................
......!!!!!!!!...................................
17:26:56 ** There are 8 equally likely possible outcomes when flipping 3 fair coins. You can list them: hhh, hht, hth, htt, thh, tht, tth, ttt. Or you can use the fact that there are 2 possibilities on each flip, therefore 2*2*2 = 2^3 = 8 possible outcomes. Only one of these outcomes, hhh, consists of 3 heads. The probability is therefore P(3 heads) = # of outcomes favorable/total number of possible outcomes = 1 / 8. The odds in favor of three heads are Odds ( 3 heads ) = # favorable to # unfavorable = 1 to 7. **
......!!!!!!!!...................................
RESPONSE --> 1 in 8 probability of 3 heads
.................................................
......!!!!!!!!...................................
17:27:24 Query 12.1.20 P(pink) from two pink parents (Rr and Rr) What is the probability of a pink offspring.
......!!!!!!!!...................................
RESPONSE --> one in four prob of a pink offspring
.................................................
......!!!!!!!!...................................
17:28:11 ** There is 1 chance in 250,000 so the probability is 1 / 250,000 = 4 * 10^-6, or .000004. **
......!!!!!!!!...................................
RESPONSE --> 1 in 250,000 or .000004
.................................................
......!!!!!!!!...................................
17:28:43 ** If cc has the disease, then the probability that the first child will have the disease is 1/4. **
......!!!!!!!!...................................
RESPONSE --> one in four odds that first child has disease
.................................................
......!!!!!!!!...................................
17:29:05 ** The sample space is {CC, Cc. cC, cc}. **
......!!!!!!!!...................................
RESPONSE --> CC, Cc, cC, cc
.................................................
......!!!!!!!!...................................
17:29:47 ** There are P(36,3) possible ordered choices of 3 people out of the 36. P(36,3) = 36! / (36-3)! = 36! / 33! = (36*35*34*33*32*31*...*1) / (33*32*31*...*1) = 36*35*34=40,000 or so. The probability of any given choice is therefore 1 / P(36,3) = 1/40,000 = .000025, approx.. For any given set of three people there are six possible orders in which they can be chosen. So the probability of the three given people, in any order, is 6 * probability of a given order = 6 / P(36,3) = 6/40,000 = .00015. Alternatively we can say that we are choosing 3 of 36 people without regard for order, so there are C(36,3) possibilities and the probability of any one of them is 1 / C(36,3). **
......!!!!!!!!...................................
RESPONSE --> it would be 36!
.................................................
......!!!!!!!!...................................
17:30:34 ** The number will be even if it ends in 2 or 4. There are 5 possible ending numbers. So 2 of the 5 possible ending numbers are even and the probability of an even number is 2/5. We analyze in two ways the number of ways to choose a number with digits 1 and 5 even. First way: There are 5! = 120 possible arrangements of the 5 digits. There are only two possible even digits, from which we will choose digit 1 and digit 5. The order of our choice certainly matters, since a different choice will give us a different 5-digit number. So we are choosing 2 digits from a set of 2 digits, where order matters. We therefore have P(2, 2) = 2*1 / 0! = 2 ways to choose these digits. The remaining 3 digits will comprise digits 2, 3 and 4. We are therefore choosing 3 digits from a set of 3, in order. There are P(3, 3) = 3*2*1/0! = 6 ways to do so. To obtain our number we can choose digits 1 and 5, then digits 2, 3 and 4. There are P(2, 2) * P(3, 3) = 2 * 6 = 12 ways to do this. So the probability that digits 1 and 5 are even is 12 / 120 = 1/10. Second way: A simpler solution looks at just the possibilities for digits 1 and 5. There are P(2, 2) = 2 choices for which these digits are even, and P(5, 2) = 20 total choices for these two digits. The probability that both will be even is therefore 2/20 = 1/10, the same as before. **
......!!!!!!!!...................................
RESPONSE --> 2 in 5 chance it will be even because there are only 2 even numbers the number can end in
.................................................
˲˂~o assignment #007 j{̜e܌xeų Liberal Arts Mathematics II 04-02-2006
......!!!!!!!!...................................
17:31:20 12.2.6 single die, p(odd or <5). What is the probability of getting an odd result or a result < 5?
......!!!!!!!!...................................
RESPONSE --> 4 in 6 prob. or .6667
.................................................
......!!!!!!!!...................................
17:32:06 Query 12.2.15 drawing neither heart nor 7 from full deck
......!!!!!!!!...................................
RESPONSE --> prob is44 in 52 or 11/13
.................................................
......!!!!!!!!...................................
17:33:24 ** There are C(13,5) = 1287 ways to get a flush in a given suit--gotta choose the 5 cards from the 13 cards in that suit. There are two black suits so there are 2 * 1287 = 2574 possible black flushes. As the text tells you there are 123,552 ways to get two pairs. You can incidentally get this as 13 * C(4, 2) * 12 * C(4, 2) * C(44, 1) / 2 (2 of the 4 cards in any of the 13 denominations, then 2 of the 4 cards in any of the remaining 12 denominations, divide by 2 because the two denominations could occur in any order, then 1 of the 44 remaining cards not in either of the two denominations. There is no way that a hand can be both a black flush and two pairs, so there is no overlap to worry about (i.e., n(A and B) = 0 so n(A or B) = n(A) + n(B) - n(A and B) = n(A) + n(B) ). Thus there are 123,552 + 2574 = 126,126 ways to get one or the other. The probability is therefore 126,126 / 2,598,960 = .0485, approx. **
......!!!!!!!!...................................
RESPONSE --> the prob of black flush or 2 pairs. would be 123,552 + 2574-2598960 .0485
.................................................
......!!!!!!!!...................................
17:34:22 ** If 2 different numbers are chosen from the set (1, 2, 3, 4, 5} then the sum 3 can appear only as 1+2. 4 can appear only as 1+3, assuming numbers can't be repeated (so, for example, 2+2 is not allowed). 5 can occur as 1+4 or as 2+3. 6 can occur as 1+5 or as 2+3. 7 can occur as 2+5 or as 1+6. 8 can occur only as 3+5. 9 can occur only as 4+5. Of the 10 possible combinations, the sums 3, 4, 8 and 9 can occur only once each, so each has probability .1. The sums 5, 6 and 7 can occur 2 times each, so each has probability .2. The possible sums are as indicated in the table below. 1 2 3 4 5 1 3 4 5 6 2 5 6 7 3 7 8 4 9 This assumes selection without replacement. There are C(5, 2) = 10 possible outcomes, as can be verified by counting the outcomes in the table. 3, 4, 8 and 9 appear once each as outcomes, so each has probability 1/10. 5, 6 and 7 appear twice each as outcomes, so each has probability 2/10. x p(x) 3 .1 4 .1 5 .2 6 .2 7 .2 8 .1 9 .1 **
......!!!!!!!!...................................
RESPONSE --> 3,4,8,9 - 1/10 5,6,7 - 1/5
.................................................
......!!!!!!!!...................................
17:34:56 Query 12.2.36 n(A)=a, n(S) = s; P(A')=? What is the P(A')?
......!!!!!!!!...................................
RESPONSE --> P(A')=n(S) - P(A)
.................................................
......!!!!!!!!...................................
17:35:41 Query 12.2.42 spinners with 1-4 and 8-10; prob product is even
......!!!!!!!!...................................
RESPONSE --> prob is 4/7
.................................................
E[~x assignment #008 j{̜e܌xeų Liberal Arts Mathematics II 04-02-2006
......!!!!!!!!...................................
17:36:25 ** The choice of the second is influenced by the first choice. If a Republican is chosen on the first choice, then there are fewer Republicans available for the second choice and the probability of getting a Republican on the second choice is lower than if a Republican had not been chosen first. COMMON ERROR: they are independant because they were randomly selected....if it is random then one did not depend on the other. EXPLANATION: The selection was indeed random, but the makeup of the remaining group available on the second choice depends on the first choice. **
......!!!!!!!!...................................
RESPONSE --> they are not independent
.................................................
......!!!!!!!!...................................
17:37:06 ** There are 13 primarily motivated by money and 14 by creativity. Each person can have only one primary motivation so there is no overlap between these two groups. There are thus 13 + 14 = 27 motivated by money or creativity, out of a total of 66 women, which gives probability 27 / 66 = 9/22 = .41 approx.. If M is the set motivated by money, C the set motivated by creativity and S the entire sample space then we have p ( M or C) = p(M) + p(C) - p(M and C) or in set notation p(M U C) = p(M) + p(C ) - p(M ^ C), with U and ^ standing for set union and intersection. Since M ^ C is empty, p(M ^ C) = 0. p(M) = n(M) / n(S) = 13 / 66 and p(C) = n(C) / n(S) = 14/66 so we have p (M U C) = 13/66 + 14/66 = 27/66 = 9/22 = .41 approx. **
......!!!!!!!!...................................
RESPONSE --> 6 in 13
.................................................
......!!!!!!!!...................................
17:37:30 Query 12.3.24 prob of club 2d given diamond first What is the desired probability and how did you obtain it?
......!!!!!!!!...................................
RESPONSE --> 1/13 is the prob
.................................................
......!!!!!!!!...................................
17:37:51 Query 12.3.32 prob of diamond given red What is the probability of getting a diamond given that the card is red?
......!!!!!!!!...................................
RESPONSE --> 1/2
.................................................
......!!!!!!!!...................................
17:38:39 ** the first sale has to be > $100, AND the second sale has to be > $100, AND the third sale has to be > $100. The events are independent. So the total probability, by the fundamental counting principle, is .8 * .8 * .8 = .512. **
......!!!!!!!!...................................
RESPONSE --> the prob is .512
.................................................
......!!!!!!!!...................................
17:38:58 ** On a given day cloud movement is not in critical direction with probability 1 - .05 = .95. this has to occur on the first day, then it has to occur on the second day, then on the third, then on the fourth, then on the fifth. These events are considered independent so the probability is .95 * .95 * .95 * .95 * .95 = .774 approx. (use your calculator to get the accurate answer). In order for none of the five days to have cloud movement in the critical direction, each of the five days must not have movement in the critical direction. The probability that the movement will not the in the critical direction for each of the days is .95. The probability that this will happen on every one of the five days is therefore .95 * .95 * .95 * .95 * .95 = .774, approx. **
......!!!!!!!!...................................
RESPONSE --> prob is .774
.................................................
......!!!!!!!!...................................
17:39:13 Query 12.3.54 probability of heads .52, tails .48; P(ht) What is the probability of head then tails?
......!!!!!!!!...................................
RESPONSE --> .50
.................................................
......!!!!!!!!...................................
17:39:44 ** The probability of rain on the first of the four days is .3, since it is given that there was no rain on the previous day. The probability of rain on each of the following for days is .8, since on each of these days it rained the day before. The probability of rain on all four days is therefore .3 * .8 * .8 * .8 = .154. ANOTHER WAY OF SAYING IT: Oct 31 was clear so the probability of rain on the first day is .3. If it rained on the first day of the month then there is a probability of .8 that it rains on the second day. If it rained on the second day of the month then there is a probability of .8 that it rains on the third day. If it rained on the third day of the month then there is a probability of .8 that it rains on the fourth day. So the probability of rain on all 4 days is .3 * .8 * .8 * .8 = .154 **
......!!!!!!!!...................................
RESPONSE --> prob is .154
.................................................
......!!!!!!!!...................................
17:39:56 ** To get rain on 3 consecutive days requires rain on the first day, which happens with probability .5; then rain on the second day given that there was rain on the first day, which is .8, then rain on the third day, given that there was rain on the previous day; this third probability is also .8. The probability of the 3 events all happening (rain of 1st day AND rain on the second day AND rain on the third day) is therefore .5 * .8 * .8 = .32. **
......!!!!!!!!...................................
RESPONSE --> prob is .32
.................................................
......!!!!!!!!...................................
17:40:30 ** ONE ANSWER: The sample space is reduced to odd numbers, and 2 is not odd. So the set within the restricted sample space {1, 3, 5, 7, 9} should just be {3, 5, 7}. ANOTHER ANSWER: If we don't use the restricted sample space then we have P(prime | odd ) = P(prme) * P(odd | prime). We find P(prime) and P(odd | prime). P(prime) = 4 / 10, since there are 4 primes between 1 and 10. Within the unrestricted sample space P(odd | prime) is 3 / 4 since of the primes 2, 3, 5, 7 only three are odd. }Thus when you multiply P(prme) * P(odd | prime) you get 4/10 * 3/4 = 3/10, just as before. **
......!!!!!!!!...................................
RESPONSE --> it is because the sample space is reduced
.................................................
......!!!!!!!!...................................
17:40:43 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> this is a littl harder than expected
.................................................
տʼnz assignment #009 j{̜e܌xeų Liberal Arts Mathematics II 04-02-2006
......!!!!!!!!...................................
17:41:07 ** On three flips you can get HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. Of there 8 possibilities, only 3 of them have two Heads. Thus the probability is 3 / 8. You can get this result without listing. There are 2 possibilities for each flip which gives you 2*2*2 = 2^3 = 8 possible outcomes. To get 2 `heads' you must get `heads' in exactly 2 of the 3 positions. There are C(3, 2) = 3 possible choices of the 3 positions so the probability is C(3,2) / 2^3 = 3/8. If you have n flips, there are C(n,r) ways to get r Heads. This number appears in the n+1 row, as the r+1 entry, of Pascal's triangle. **
......!!!!!!!!...................................
RESPONSE --> 3/8
.................................................
......!!!!!!!!...................................
17:41:45 ** .5^2 is the probability of getting Heads twice in a row. .5 is the probability of a Tails. .5^2 * .5 is therefore the probability of getting HHT. Since the probabilities are independent, you have the same probability of getting two Heads and a Tail in some different order. Since there are C(3,2) possible orders for 2 Heads on 3 coins, the probability of getting 2 Heads and one Tail is C(3,2) * .5^2 * .5 = 3 * .125 = .375, the same as the 3/8 we obtained by listing. **
......!!!!!!!!...................................
RESPONSE --> heads and tails would both be the same at 3/8 even though it's 50/50
.................................................
......!!!!!!!!...................................
17:42:13 ** Probability of getting no heads on three flips is P(TTT) = .5 * .5 * .5 = .125, or 1/8, obtained by multiplying the probability of getting a tails for each of 3 independent flips. Subtracting this from 1 gives .875, or 7/8. **
......!!!!!!!!...................................
RESPONSE --> 7/8 of at least 1 head
.................................................
......!!!!!!!!...................................
17:42:27 ** There are C(7,3) = 7 * 6 * 5 / 3! = 35 ways to choose three of the 7 `positions' for Heads on 7 flips. So there are C(7,3) = 7 * 6 * 5 / 3! = 35 ways to get three heads on 7 flips. The probability of any of these ways is (1/2)^3 * (1/2)^4 = 1 / 2^7 = 1 / 128. The probability of 3 Heads on 7 flips is therefore 35 * 1/128 = 35 / 128. **
......!!!!!!!!...................................
RESPONSE --> 1/128
.................................................
......!!!!!!!!...................................
17:42:43 ** To get 1 success on 3 tries you have to get 1 success and 2 failures. On any flip the probability of success is 1/6 and the probability of failure is 5/6. For any ordered sequence with 1 success and 2 failures the probability is 1/6 * (5/6)^2. Since there are C(3,1) = 3 possible orders in which exactly 1 success can be obtained, the probability is C(3,1) * 1/6 * (5/6)^2 = 4 * 1/6 * 25 / 36 = 100 / 216 = 25 / 72. This matches the binomial probability formula C(n, r) * p^r * q^(n-r), with prob of success p = 1/6, prob of failure q = 1 - 1/6 = 5/6, n = 3 trials and r = 1 success. **
......!!!!!!!!...................................
RESPONSE --> prob is 1/4
.................................................
......!!!!!!!!...................................
17:43:33 ** The probability of a correct answer from a random choice on any single question is 1/3. For any sequence of 7 correct answers and 3 incorrect the probability is (1/3)^7 * (2/3)^3. There are C(10,7) possible positions for 7 correct answers among 10 questions. So the probability is C(10,7) * (1/3)^7 * (2/3)^3 = 320/19683 = 0.0163 approx. This matches the binomial probability formula C(n, r) * p^r * q^(n-r), with prob of success p = 1/3, prob of failure q = 1 - 1/3 = 2/3, n = 10 trials and r = 7 success. ANOTHER SOLUTION: There are C(10,7) ways to distribute the 7 correct answers among the 10 questions. The probability of any single outcome with 7 successes and 3 failures is the product of (1/3)^7, representing 7 successes, and (2/3)^3, representing 3 failures. The probability of exactly seven correct questions is therefore prob = C(10,7) * (2/3)^3 * (1/3)^7 . **
......!!!!!!!!...................................
RESPONSE --> prob is C(10,7) x2/27 x 1/21
.................................................
......!!!!!!!!...................................
17:43:43 ** The probability of 0 side effects is C(8,0) * .7^8. The probability of 1 side effect is C(8,1) * .7^7 * .3^1. The probability of 2 side effects is C(8,2) * .7^6 * .3^2. The sum of these two probabilities is the probability that two or fewer patients will have side effects. We subtract this probability from 1 to get the probability that more than 2 will experience side effects. The result is approximately .448. DER**
......!!!!!!!!...................................
RESPONSE --> .448
.................................................
......!!!!!!!!...................................
17:43:59 ** The fourth child will be the first daughter if the sequence is SSSD, S standing for son and D for daughter. The probability of S on any birth is .5, and the probability of G is .5. The probability of SSSD is .5^3 * .5 = .0625 or 1/16. **
......!!!!!!!!...................................
RESPONSE --> 1/16 is the prob
.................................................
......!!!!!!!!...................................
17:44:15 ** To end up 6 blocks South requires 8 steps South and 2 steps North. Thus exactly 8 of the 10 steps must be South, and there are C(10,8) ways for this to happen. The probability of any given combination of 8 South and 2 North is (1/2)^8 * (1/2)^2 = 1 / 2^10 = 1 / 1024. The probability of ending up 6 blocks South is therefore prob = C(10,8) * (1/2)^8 * (1/2)^2 = 45 * (1/2)^10 = 45 / 1024, or about .044. **
......!!!!!!!!...................................
RESPONSE --> .044
.................................................
"