Assignment 17

course Phy 121

w???????????assignment #017017. `query 17

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

Physics I

07-29-2007

......!!!!!!!!...................................

20:26:28

ANSWERS/COMMENTARY FOR QUERY 17

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:27:49

prin phy and gen phy 6.33: jane at 5.3 m/s; how high can she swing up that vine?

......!!!!!!!!...................................

RESPONSE -->

1.4 m, not unless length is < 0.7m

confidence assessment: 1

.................................................

......!!!!!!!!...................................

20:28:16

Jane is going to convert her KE to gravitational PE. We assume that nonconservative forces are negligible, so that `dKE + `dPE = 0 and `dPE = -`dKE.

Jane's KE is .5 M v^2, where M is her mass. Assuming she swings on the vine until she comes to rest at her maximum height, the change in her KE is therefore

`dKE = KEf - KE0 = 0 - .5 M v0^2 = - .5 M v0^2, where v0 is her initial velocity.

Her change in gravitational PE is M g `dy, where `dy is the change in her vertical position. So we have

`dKE = - `dPE, or

-5 M v0^2 = - ( M g `dy), which we solve for `dy (multiply both sides by -1, divide both sides by M g) to obtain

`dy = v0^2 / (2 g) = (5.3 m/s)^2 / (2 * 9.8 m/s^2) = 1.43 m.

......!!!!!!!!...................................

RESPONSE -->

I got the correct answer.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

20:29:30

prin phy and gen phy 6.39: 950 N/m spring compressed .150 m, released with .30 kg ball. Upward speed, max altitude of ball

......!!!!!!!!...................................

RESPONSE -->

Upward speed = 8.3 m/s

Max altitude of ball = 3.64 m

confidence assessment: 1

.................................................

......!!!!!!!!...................................

20:30:32

We will assume here that the gravitational PE of the system is zero at the point where the spring is compressed. In this situation we must consider changes in both elastic and gravitational PE, and in KE.

The PE stored in the spring will be .5 k x^2 = .5 ( 950 N/m ) ( .150 m)^2 = 107 J. When released, conservation of energy (with only elastic and gravitational forces acting there are no nonconservative forces at work here) we have `dPE + `dKE = 0, so that `dKE = -`dPE.

Since the ball is moving in the vertical direction, between the release of the spring and the return of the spring to its equilibrium position, the ball t has a change in gravitational PE as well as elastic PE. The change in elastic PE is -107 J, and the change in gravitational PE is m g `dy = .30 kg * 9.8 m/s^2 * .150 m = +4.4 J. The net change in PE is therefore -107 J + 4.4 J = -103 J.

Thus between release and the equilibrium position of the spring, `dPE = -103 J

The KE change of the ball must therefore be `dKE = - `dPE = - (-103 J) = +103 J. The ball gains in the form of KE the 103 J of PE lost by the system.

The initial KE of the ball is 0, so its final KE is 103 J. We therefore have

.5 m vv^2 = KEf so that

vf=sqrt(2 KEf / m) = sqrt(2 * 103 J / .30 kg) = 26 m/s.

To find the max altitude to which the ball rises, we return to the state of the compressed spring, with its 107 J of elastic PE. Between release from rest and max altitude, which also occurs when the ball is at rest, there is no change in velocity and so no change in KE. No nonconservative forces act, so we have `dPE + `dKE = 0, with `dKE = 0. This means that `dPE = 0. There is no change in PE. The initial PE is 107 J and the final PE must also therefore be 107 J.

There is, however, a change in the form of the PE. It converts from elastic PE to gravitational PE. Therefore at maximum altitude the gravitational PE must be 107 J. Since PEgrav = m g y, and since the compressed position of the spring was taken to be the 0 point of gravitational PE, we therefore have

y = PEgrav / (m g) = 107 J / (.30 kg * 9.8 m/s^2) = 36.3 meters.

The ball will rise to an altitude of 36.3 meters above the compressed position of the spring.

......!!!!!!!!...................................

RESPONSE -->

I see where I made my mistake.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

20:30:41

gen phy problem A high jumper needs to be moving fast enough at the jump to lift her center of mass 2.1 m and cross the bar at a speed of .7 m/s. What minimum velocity does she require?

......!!!!!!!!...................................

RESPONSE -->

Not applicable.

confidence assessment: 0

.................................................

......!!!!!!!!...................................

20:30:49

FORMAL SOLUTION:

Formally we have `dPE + `dKE = 0.

`dPE = M * g * `dy = M * 20.6 m^2 / sec^2, where M is the mass of the jumper and `dy is the 2.1 m change in altitude.

`dKE = .5 M vf^2 - .5 M v0^2, where vf is the .7 m/s final velocity and v0 is the unknown initial velocity.

So we have

M g `dy + .5 M vf^2 - .5 M v0^2 = 0.

Dividing through by M we have

g `dy + .5 vf^2 - .5 v0^2 = 0.

Solving for v0 we obtain

v0 = sqrt( 2 g `dy + vf^2) = sqrt( 2* 9.8 m/s^2 * 2.1 m + (.7 m/s)^2 ) = sqrt( 41.2 m^2/s^2 + .49 m^2 / s^2) = sqrt( 41.7 m^2 / s^2) = 6.5 m/s, approx..

LESS FORMAL, MORE INTUITIVE, EQUIVALENT SOLUTION:

The high jumper must have enough KE at the beginning to increase his PE through the 2.1 m height and to still have the KE of his .7 m/s speed.

The PE change is M * g * 2.1 m = M * 20.6 m^2 / sec^2, where M is the mass of the jumper

The KE at the top is .5 M v^2 = .5 M (.7 m/s)^2 = M * .245 m^2 / s^2, where M is the mass of the jumper.

Since the 20.6 M m^2 / s^2 increase in PE must come at the expense of the initial KE, and since after the PE increase there is still M * .245 m^2 / s^2 in KE, the initial KE must have been 20.6 M m^2 / s^2 + .245 M m^s / s^2 =20.8 M m^s / s^2, approx.

If initial KE is 20.8 M m^s / s^2, then .5 M v0^2 = 20.8 M m^s / s^2.

We divide both sices of this equation by the jumper's mass M to get

.5 v0^2 = 20.8 m^2 / s^2, so that

v0^2 = 41.6 m^2 / s^2 and

v0 = `sqrt(41.6 m^2 / s^2) = 6.5 m/s, appprox.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

20:30:58

query Univ. 7.42 (7.38 in 10th edition). 2 kg block, 400 N/m spring, .220 m compression. Along surface then up 37 deg incline all frictionless. How fast on level, how far up incline?

......!!!!!!!!...................................

RESPONSE -->

Not applicable.

confidence assessment: 0

.................................................

......!!!!!!!!...................................

20:31:12

** The spring exerts a force of 400 N / m * .220 m = 84 N at the .220 m compression. The average force exerted by the spring between equilibrium and this point is therefore (0 N + 84 N) / 2 = 42 N, so the work done in the compression is

`dW = Fave * `ds = 42 N * .220 m = 5.0 Joules, approx.

If all this energy is transferred to the block, starting from rest, the block's KE will therefore be 5.0 Joules. Solving KE = .5 m v^2 for v we obtain v = sqrt(2 KE / m) = sqrt(2 * 5.0 Joules / (2 kg) ) = 2.2 m/s, approx..

No energy is lost to friction so the block will maintain this speed along the level surface. As it begins to climb the incline it will gain gravitational PE at the expense of KE until the PE is 5.0 J and the KE is zero, at which point it will begin to slide back down the incline.

After traveling through displacement `ds along the incline the height of the mass will be `ds sin(37 deg) = .6 `ds, approx., and its gravitational PE will be PE = m g h = m g * .6 `ds = .6 m g `ds.

Setting this expression equal to KE we obtain the equation

.6 m g `ds = KE,

which we solve for `ds to obtain

`ds = KE / (.6 m g) = 5.0 Joules / (.6 * 2 kg * 9.8 m/s^2) = .43 meters, approx. **

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

......!!!!!!!!...................................

20:31:23

query univ phy 7.50 62 kg skier, from rest, 65 m high. Frict does -10.5 kJ.

What is the skier's speed at the bottom of the slope?

After moving horizontally over 82 m patch, air res 160 N, coeff frict .2, how fast is she going?

Penetrating 2.5 m into the snowdrift, to a stop, what is the ave force exerted on her by the snowdrift?

......!!!!!!!!...................................

RESPONSE -->

Not applicable.

confidence assessment: 0

.................................................

......!!!!!!!!...................................

20:31:29

** The gravitational PE of the skier decreases by 60 kg * 9.8 m/s^2 * 65 m = 38 kJ, approx. (this means 38 kiloJoules, or 38,000 Joules). The PE loss partially dissipated against friction, with the rest converted to KE, resulting in KE = 38 kJ / 10.5 kJ = 27.5 kJ.

Formally we have

`dKE + `dPE + `dWnoncons = 0, where `dWnoncons is the work done by the skier against friction. Since friction does -10.5 kJ of work on the skier, the skier does 10.5 kJ of work against friction and we have `dKE = -`dPE - `dWnoncons = - (-38 kJ) - 10.5 kJ = 27.5 kJ.

The speed of the skier at this point will be

v = sqrt( 2 KE / m) = sqrt( 2 * 27,500 J / (65 kg) ) = 30 m/s, approx.

Over the 82 m patch the force exerted against friction will be .2 * 60 kg * 9.8 m/s^2 = 118 N, approx., so the force exerted against nonconservative forces will be 118 N + 160 N = 280 N approx.. The work done will therefore be

`dWnoncons = 280 N * 82 m = 23 kJ, approx.,

and the skier's KE will be

KE = 27.5 kJ - 23 kJ = 4.5 kJ, approx.

This implies a speed of

v = sqrt( 2 KE / m) = 12 m/s, approx.

To stop from this speed in 2.5 m requires that the remaining 4.5 kJ of KE be dissipated in the 2.5 m distance. Thus we have

`dW = Fave * `ds, so that

Fave = `dW / `ds = 4500 J / (2.5 m) = 1800 N.

This is a significant force, about 3 times the weight of the skier, but distributed over a large area of her body will cause a good jolt, but will not be likely to cause injury.**

......!!!!!!!!...................................

RESPONSE -->

self critique assessment: 3

.................................................

^????H????????assignment #017

017. collisions

Physics II

07-29-2007

......!!!!!!!!...................................

20:11:56

`q001. Note that this assignment contains 5 questions.

. A mass of 10 kg moving at 5 meters/second collides with a mass of 2 kg which is initially stationary. The collision lasts .03 seconds, during which time the velocity of the 10 kg object decreases to 3 meters/second. Using the Impulse-Momentum Theorem determine the average force exerted by the second object on the first.

......!!!!!!!!...................................

RESPONSE -->

Object 1:

m = 10 kg

v = 5 m/s

Collision time = .03 sec

after collision v = 3 m/s

F = ma

F = 10 * 5 = 50N

F = 'dp / 'dt = (10*5) / .03 = 1667N Before

F = 'dp / 'dt = (10*3) / .03 = 1000N After

Difference is 667N

Average is (1667+1000) / 2 = 1334N

confidence assessment: 1

.................................................

......!!!!!!!!...................................

20:13:00

By the Impulse-Momentum Theorem for a constant mass, Fave * `dt = m `dv so that Fave = m `dv / `dt = 10 kg * (-2 meters/second)/(.03 seconds) = -667 N.

Note that this is the force exerted on the 10 kg object, and that the force is negative indicating that it is in the direction opposite that of the (positive) initial velocity of this object. Note also that the only thing exerting a force on this object in the direction of motion is the other object.

......!!!!!!!!...................................

RESPONSE -->

I got the positive version of the correct numerical value.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

20:16:03

`q002. For the situation of the preceding problem, determine the average force exerted on the second object by the first and using the Impulse-Momentum Theorem determine the after-collision velocity of the 2 kg mass.

......!!!!!!!!...................................

RESPONSE -->

Fave * 'dt = m 'dv

Fave = m 'dv/'dt = 2kg * (-2m/s)/(.03sec) = -133N

confidence assessment: 1

.................................................

......!!!!!!!!...................................

20:18:55

Since the -667 N force exerted on the first object by the second implies and equal and opposite force of 667 Newtons exerted by the first object on the second.

This force will result in a momentum change equal to the impulse F `dt = 667 N * .03 sec = 20 kg m/s delivered to the 2 kg object.

A momentum change of 20 kg m/s on a 2 kg object implies a change in velocity of 20 kg m / s / ( 2 kg) = 10 m/s.

Since the second object had initial velocity 0, its after-collision velocity must be 10 meters/second.

......!!!!!!!!...................................

RESPONSE -->

If I understand this correctly my first mistake was not considering the equal and opposite force applied to the second object (667N). Then I should have used the impulse formula ( F 'dt) to get 20 kg m/s delivered to the 2kg object. Then I should have divided 20 by 2 to get 10 m/s.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

20:21:45

`q003. For the situation of the preceding problem, is the total kinetic energy after collision less than or equal to the total kinetic energy before collision?

......!!!!!!!!...................................

RESPONSE -->

I'm sure that there is a mathematical way to do this, but if equal and opposite still applies I'm thinking the KE would be the same after collision. Or, the KE is zero and has been converted to PE which would be equal to the original amount of KE.

confidence assessment: 0

Forces are equal and opposite, so impulses are equal and opposite and momentum changes are equal and opposite.

However none of this extends to KE. Equal and opposite forces can result in a change in KE.

.................................................

......!!!!!!!!...................................

20:22:40

The kinetic energy of the 10 kg object moving at 5 meters/second is .5 m v^2 = .5 * 10 kg * (5 m/s)^2 = 125 kg m^2 s^2 = 125 Joules. Since the 2 kg object was initially stationary, the total kinetic energy before collision is 125 Joules.

The kinetic energy of the 2 kg object after collision is .5 m v^2 = .5 * 2 kg * (10 m/s)^2 = 100 Joules, and the kinetic energy of the second object after collision is .5 m v^2 = .5 * 10 kg * (3 m/s)^2 = 45 Joules. Thus the total kinetic energy after collision is 145 Joules.

Note that the total kinetic energy after the collision is greater than the total kinetic energy before the collision, which violates the conservation of energy unless some source of energy other than the kinetic energy (such as a small explosion between the objects, which would convert some chemical potential energy to kinetic, or perhaps a coiled spring that is released upon collision, which would convert elastic PE to KE) is involved.

......!!!!!!!!...................................

RESPONSE -->

Well, at least I was right about the KE to PE conversion.

self critique assessment: 2

.................................................

......!!!!!!!!...................................

20:23:09

`q004. For the situation of the preceding problem, how does the total momentum after collision compare to the total momentum before collision?

......!!!!!!!!...................................

RESPONSE -->

Total momentum after collision should be less than before the collision.

confidence assessment: 0

.................................................

......!!!!!!!!...................................

20:23:56

The momentum of the 10 kg object before collision is 10 kg * 5 meters/second = 50 kg meters/second. This is the total momentum before collision.

The momentum of the first object after collision is 10 kg * 3 meters/second = 30 kg meters/second, and the momentum of the second object after collision is 2 kg * 10 meters/second = 20 kg meters/second. The total momentum after collision is therefore 30 kg meters/second + 20 kg meters/second = 50 kg meters/second.

The total momentum after collision is therefore equal to the total momentum before collision.

......!!!!!!!!...................................

RESPONSE -->

This solution makes sense.

self critique assessment: 3

.................................................

......!!!!!!!!...................................

20:25:29

`q005. How does the Impulse-Momentum Theorem ensure that the total momentum after collision must be equal to the total momentum before collision?

......!!!!!!!!...................................

RESPONSE -->

I'm not sure how to explain this properly, however it has something to do with how the formula are set up to derive the appropriate and how we would violate laws of energy and such if they weren't equal.

confidence assessment: 0

.................................................

......!!!!!!!!...................................

20:26:20

Since the force is exerted by the 2 objects on one another are equal and opposite, and since they act simultaneously, we have equal and opposite forces acting for equal time intervals. These forces therefore exert equal and opposite impulses on the two objects, resulting in equal and opposite changes in momentum.

Since the changes in momentum are equal and opposite, total momentum change is zero. So the momentum after collision is equal to the momentum before collision.

......!!!!!!!!...................................

RESPONSE -->

Wow I made a stupid mistake here, all I had to mention was the concept of equal and opposite. I definately overthought this question.

self critique assessment: 2

................................................."

&#

Good work. See my notes and let me know if you have questions. &#