course Mth 174 ãŽÞâºßëvúØòáÓRã¤Ö¡®³ª¶öçassignment #008
......!!!!!!!!...................................
19:07:50 query explain the convergence or divergence of series (no summary needed)
......!!!!!!!!...................................
RESPONSE --> A series converges if the limit of the series as the number of terms approaches infinity (or negative infinity) approaches a finite number. A series diverges if the limit of the series as the number of terms approaches infinity (or negative infinity) does not approach a finite number.
.................................................
......!!!!!!!!...................................
19:21:30 explain how we know that the integral from 1 to infinity of 1 / x^p converges if p > 1, diverges for p < 1, diverges for p = 1
......!!!!!!!!...................................
RESPONSE --> If p > 1, the integral of 1/ x^p from 1 to infinity is equal to 1/(p-1), which is finite. If p < 1, the integral (shown on page 350, example 3) grows without bound. If p = 1, the integral is lim (b>inifinity) of ln x from 1 to b, which is lim(b>infinity) of ln b - ln 1, and ln b grows without bound as b>infinity.
.................................................
......!!!!!!!!...................................
19:59:24 explain how we know that the integral from 0 to 1 of 1 / x^p diverges if p > 1, converges for p < 1, diverges for p = 1
......!!!!!!!!...................................
RESPONSE --> The integral of 1/x^p, evaluated from 0 to b is (1/-p+1)*b^(-p+1). If the exponent of b is positive, as b>0, b^(-p+1) approaches 0. If the exponent is negative, b^(-p+1) grows without limit. The exponent is positive when p<1 and negative when p>1. When p=1, the first part of the expression (1/(-p+1)) becomes indeterminate.
.................................................
......!!!!!!!!...................................
20:18:22 explain how we know that the integral from 0 to infinity of e^(-a x) converges for a > 0.
......!!!!!!!!...................................
RESPONSE --> The integral of e^(-a x), for any a>0, is (-1/a)e^(-a x), evaluated from 0 to b, which is (-1/a)e^(-ab) - (-1/a)e^(0). The first term approaches 0 rapidly as b grows rapidly, while the second term is a constant, thus the integral will converge to the constant.
.................................................
......!!!!!!!!...................................
20:19:15 query problem 7.8.18 integral of 1 / (`theta^2+1) from 1 to infinity
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:27:38 does the integral converge or diverge, and why?
......!!!!!!!!...................................
RESPONSE --> The integral diverges. Since sqrt(theta^2+1) is >= sqrt(theta^2), 1/sqrt(theta^2+1) <= 1/sqrt(theta^2). Thus the integral of 1/sqrt(theta^2+1) <= integral of 1/sqrt(theta^2) (both integrals from 1 to infinity). The integral of 1/sqrt(theta^2) is the integral of 1/theta from 1 to infinity, which by rule diverges (p=1).
.................................................
......!!!!!!!!...................................
20:27:53 If you have not already stated it, with what convergent or divergent integral did you compare the given integral?
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
20:29:55 query problem 7.8.19 (3d edition #20) convergence of integral from 0 to 1 of 1 / `sqrt(`theta^3 + `theta)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:35:30 does the integral converge or diverge, and why?
......!!!!!!!!...................................
RESPONSE --> The integral diverges. For theta>=0, theta^3+theta is >=theta^3, so sqrt theta^3+theta >= sqrt theta^3. Thus 1/sqrt theta^3+theta <= 1/sqrt theta^3, and integral of 1/sqrt theta^3+theta <= integral of 1/sqrt theta^3 (both integrals from 0 to 1). Integral of 1/sqrt theta^3 = integral of 1/theta^(3/2), which by rule diverges (p>1).
.................................................
......!!!!!!!!...................................
20:35:41 If you have not already stated it, with what convergent or divergent integral did you compare the given integral?
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
20:35:58 Query problem 8.1.5. Riemann sum and integral inside x^2 + y^2 = 10 within 1st quadrant, using horizontal strip of width `dy.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:42:13 Give the Riemann sum and the definite integral it approaches.
......!!!!!!!!...................................
RESPONSE --> Area of slice = xsubi*delta y. xsubi^2+ysubi^2 = 10, solved for xsubi = sqrt(10-ysubi^2). The Riemann sum is sum(i=1 to n) xsubi * delta y = sum(i=1 to n) sqrt(10-ysubi^2)*delta y. The definite integral it approaches is: Integral (0 to sqrt 10) sqrt(10-y^2) dy
.................................................
......!!!!!!!!...................................
20:45:43 Give the exact value of your integral.
......!!!!!!!!...................................
RESPONSE --> Using formula #30 and formula #28, the integral is (y/2)*sqrt(10-y^2) + 5 arcsin (y/sqrt 10), evaulated from 0 to sqrt 10. This simplifies to 5 arcsin 1 - 5 arcsin 0 = 5*(pi/2) - 0 = (5pi)/2
.................................................
......!!!!!!!!...................................
20:50:17 Query problem 8.1.12. Half disk radius 7 m thickness 10 m, `dy slice parallel to rectangular base.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
20:59:07 Give the Riemann sum and the definite integral it approaches.
......!!!!!!!!...................................
RESPONSE --> Volume(slice) = lengthsubi*10*delta y By Pythagorean theorem: lengthsub1/2 = sqrt(7^2 - ysubi^2), so lengthsubi = 2*sqrt(7^2 - ysubi^2) Volume(slice) = 2*sqrt(7^2 - ysubi^2) * 10 * delta y = 20*sqrt(7^2 - ysubi^2) delta y Riemann sum (volume) = sum (i=1 to n) 20*sqrt(7^2 - ysubi^2) delta y Integral (from 0 to 7) 20*sqrt(7^2-y^2) dy
.................................................
......!!!!!!!!...................................
21:04:25 Give the exact value of your integral.
......!!!!!!!!...................................
RESPONSE --> Using formulas #30 and #28, the integral is: 10y*sqrt(7^2-y^2) + 490 arcsin (y/7), evaluated from 0 to 7 Simplifies to 0 + 490 arcsin 1 - 490 arcsin 0 = 490pi/2 - 0 = 245pi m^3
.................................................
......!!!!!!!!...................................
21:05:00 query problem 8.2.11 arc length x^(3/2) from 0 to 2
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
21:12:24 what is the arc length?
......!!!!!!!!...................................
RESPONSE --> f(x) = x^(3/2) f,(x) = (3/2)x^(1/2) Substituting in the arc length formula: Integral (from 0 to 2) of sqrt[1+((3/2)x^(1/2))^2] dx =Integral (from 0 to 2) of sqrt[1+(9/4)x] dx = 3.53 (approx.) (using calculator to compute)
.................................................
......!!!!!!!!...................................
21:12:37 What integral do you evaluate obtain the arc length?
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
21:23:11 What is the approximate arc length of a section corresponding to an increment `dx near coordinate x on the x axis?
......!!!!!!!!...................................
RESPONSE --> If dx is sufficiently small for f(x) to approximate a straight line at x, then the arc length can be computed using the distance formula: Arc length = sqrt(dx^2 + dy^2)
.................................................
......!!!!!!!!...................................
21:24:32 What is the slope of the graph near the graph point with x coordinate x?
......!!!!!!!!...................................
RESPONSE --> The slope of the graph is f'(x) = (3/2)x^(1/2).
.................................................
......!!!!!!!!...................................
21:31:11 How is this slope related to the approximate arc length of the section?
......!!!!!!!!...................................
RESPONSE --> Since the slope represents dy/dx, if we know the slope and dx, we can find dy to substitute into the distance formula in the previous response. The greater the slope, the longer the arc length for a given dx.
.................................................
......!!!!!!!!...................................
21:31:36 query problem 8.2.31 volume of region bounded by y = e^x, x axis, lines x=0 and x=1, cross-sections perpendicular to the x axis are squares
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
21:40:05 what is the volume of the region?
......!!!!!!!!...................................
RESPONSE --> Side of square = ssubi = y = e^x Volume(slice) = ssubi^2 * delta x = (e^x)^2 * delta x = e^(2x) * delta x Riemann sum (volume of region) = sum (i=1 to n) e^(2x) delta x Integral (from 0 to 1) e^(2x) dx = (e^(2x))/2, evaluated from 0 to 1 = e^2/2 - e^0/2 = e^2/2 - 1/2 = 3.19 units^3 (approx.)
.................................................
......!!!!!!!!...................................
21:40:17 What integral did you evaluate to get the volume?
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
21:42:59 What is the cross-sectional area of a slice perpendicular to the x axis at coordinate x?
......!!!!!!!!...................................
RESPONSE --> The cross-sectional area of the slice is (e^x)^2 or e^(2x).
.................................................
......!!!!!!!!...................................
21:44:47 What is the approximate volume of a thin slice of width `dx at coordinate x?
......!!!!!!!!...................................
RESPONSE --> The approximate volume of a thin slice of width dx is the cross-sectional area * dx or e^(2x) * dx.
.................................................
......!!!!!!!!...................................
21:47:40 How the you obtain the integral from the expression for the volume of the thin slice?
......!!!!!!!!...................................
RESPONSE --> The Riemann sum for the volume is the sum of the volumes of the thin slices, which is approximated by taking the integral of the expresson for the volume of the thin slice and evaluating it between the two ends of the interval.
.................................................
......!!!!!!!!...................................
21:50:08 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> This was a very lengthy assignment! I had some initial difficulty with 8.2, #26 and 27--particularly #26--visualizing the shape of the solid. I had to do #27 first, which then gave me an idea of how to visualize #26.
.................................................
"