Assignment 5

#$&*

course Mth 174

Questions from text assignment:*********************************************

Question: Section 7.3 Problem 3

problem 7.3.3 (previously 7.3.15) x^4 e^(3x) **** what it is your antiderivative?

......!!!!!!!!...................................

20:35:16

Formula:

Int{p(x) e^(ax)} dx = (1/a) p(x) e^(ax) dx

= (1/a) p(x) e^(ax) - (1/a^2) Int{p’(x) e^(ax)} dx

= (1/a) p(x) e^(ax) - [(1/a^2) p’(x) e^(ax) - (1/a^3) Int{p’’(x) e^(ax)} dx]

= (1/a) p(x) e^(ax) - {(1/a^2) p’(x) e^(ax) - [(1/a^3) p’’(x) e^(ax) - (1/a^4) Int{p’’’(x) e^(ax)} dx]}

= (1/a) p(x) e^(ax) - {(1/a^2) p’(x) e^(ax) - [(1/a^3) p’’(x) e^(ax) - {(1/a^4) p’’’(x) e^(ax) -(1/a^5) Int{p’’’’(x) e^(ax)} dx}]}

p(x) = x^4

p’(x) = 4x^3

p’’(x) = 12x^2

p’’’(x) = 24x

p’’’’(x) = 24

a = 3

Int{p’’’’(x) e^(ax)} dx} = Int{24 e^(3x)} = 8 e^(3x)

Int{x^4 e^(3x)} = (1/3) (x^4) e^(3x) - {(1/3^2) (4x^3) e^(3x) - [(1/3^3) (12x^2) e^(3x) - {(1/3^4) (24x) e^(3x) -(1/3^5) Int{(24) e^(3x)} dx}]}

= (1/3) x^4 e^(3x) - {(4/9) 4x^3 e^(3x) - [(12/27) x^2 e^(3x) - {(24/81) x e^(3x) - (1/243) Int{(24) e^(3x)} dx}]}

= (4/9) x^4 e^(3x) - {(4/9) 4x^3 e^(3x) - [(4/9) x^2 e^(3x) - {(8/27) x e^(3x) - (1/243) {8 e^(3x)}]} + C

= (1/3) x^4 e^(3x) - (4/9) 4x^3 e^(3x) + (4/9) x^2 e^(3x) - (8/27) x e^(3x) + (8/243) e^(3x) + C

The integral is of x^4 e^(3 x).

x^4 is a polynomial, and e^(3 x) is of the form e^(a x). So the integrand is of the form

p(x) e^(a x)

with p(x) = x^4 and a = 3.

The correct formula to use is #14

We obtain

p ' (x) = 4 x^3

p '' (x) = 12 x^2

p ''' (x) = 24 x

p '''' (x) = 24.

Thus the solution is

1 / a * p(x) e^(a x) - 1 / a^2 * p ' (x) e^(a x) + 1 / a^3 * p''(x) e^(a x) - 1 / a^4 * p ''' (x) e^(a x) + 1 / a^5 * p''''(x) e^(a x)

= 1 / 3 * x^4 e^(3 x) - 1 / 3^2 * 4 x^3 e^(3 x) + 1 / 3^3 * 12 x^2 e^(3 x) - 1 / 3^4 * 24 x e^(3 x) + 1 / 3^5 * 24 e^(3 x)

= ((1/3) x^4 - (4/9) x^3 + (4/9) x^2 - (8/27)x + (8/81) e^(3x) + C

.........................................

20:35:18

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I seem to have done something wrong to end up with several extra e^(3x)’s.

------------------------------------------------

Self-critique Rating: 2

@&

The e^(3x) has been factored out of the expression. All that is required is that the original parenthesis be closed:

( (1/3) x^4 - (4/9) x^3 + (4/9) x^2 - (8/27)x + (8/81) e^(3x) ) + C

*@

*********************************************

Question: Which formula from the table did you use?

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Formula 14: Int{p(x) e^(ax)} dx = (1/a) p(x) e^(ax) dx , etc.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

You should have used formula 14, with a = 3 and p(x) = x^4.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Question 7.3 Problem 7

problem 7.3.7 (previously 7.3.33 1 / [ 1 + (z+2)^2 ) ]) **** What is your integral? **** Which formula from the table did you use and how did you get the integrand into the form of this formula?

.......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int{1 / [ 1 + (z+2)^2}

Formula used:

Int{1/(x^2 + a^2)} = (1/a) arctan(x/a)

Formula modified:

Int{1/(x^2 + a^2)} = Int{1/(a^2(1+ x^2/(a^2))}

Int{(1/a^2) (1+ x^2/(a^2))} = (1/a) arctan(x/a)

x = z+2; a = 1

Int{(1/1^2) (1 + (z+2)^2/(1^2))} = 1/1 arctan[(z+2)/1)

= arctan(z+2)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If you let u = x+2 then du = dz and the integrand becomes 1 / (1 + u^2). This is the derivative of arctan(u), so letting u = z+2 gives us the correct result

• arctan(z+2) + C

Applying the formula:

z is the variable of integration in the given problem, x is the variable of integration in the table. a is a constant, so a won't be z + 2.

By Formula 24 the antiderivative of 1 / (a^2 + x^2) is 1/a * arcTan(x/a).

Unlike some formulas in the table, this formula is easy to figure out using techniques of integration you should already be familiar with:

1 / (a^2 + x^2) = 1 / (a^2( 1 + x^2/a^2) ) = 1/a^2 ( 1 / (1 + (x/a)^2).

Let u = x / a so du = dx / a; you get integrand 1 / a * (1 / (1 + u^2) ) , which has antiderivative 1/a * arcTan(u) = 1/a * arcTan(x/a).

You don't really need to know all that, but it should clarify what is constant and what is variable.

Starting with int(1/ (1+(z+2)^2) dz ), let x = z + 2 so dx = dz. You get

int(1/ (1+x^2) dx ), which is formula 24 with a = 1. The result is

1/1 * arcTan(x/1), or just arcTan(x). Since x = z + 2, the final form of the integral is

arcTan(z+2).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Problem 7.4 Problem 1

7.4.1 (previously 7.4.6). Integrate 2y / ( y^3 - y^2 + y - 1)

.......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int{2y / ( y^3 - y^2 + y - 1)} = 2 * Int{y / ( y^3 - y^2 + y - 1)}

y^3 - y^2 + y - 1 = y^2(y - 1) + (y - 1) = (y^2 + 1)(y - 1)

Using partial fractions:

(a y + b) /(y^2 + 1) + c /(y-1)

= y / [(y^2+1)(y-1)]

= [(a y + b)(y-1) + c(y^2+1)] / [(y^2+1)(y-1)]

= y / [(y^2+1)(y-1)]

To find a, b, c:

(a y + b)(y-1) + c(y^2+1) =

a (y^2) + (-a + b) y - b + c (y^2) + c =

(a + c) y^2 + (-a + b) y + c - b = y

a + c = 0

-a + b = 1

c - b = 0

b = c

a = -c

So…

c + c = 1

2c = 1

c = 1/2.

b = c = 1/2

a = -c = -1/2.

(a y + b) /(y^2 + 1) + c /(y-1) = 1/2 * (-y + 1 ) / (y^2 + 1) + 1/2 * 1 / (y-1)

= (-1/2 ) y / (y^2 + 1) + 1/2 * 1 / (y^2 + 1) + 1/2 * 1 / (y-1)

2 * Int{(-1/2 ) y / (y^2 + 1) + 1/2 * 1 / (y^2 + 1) + 1/2 * 1 / (y-1)}

= 2{-1/4 ln(y^2 + 1) + 1/2 arcTan(y) + 1/2 ln | y - 1 |} + C

= - 1/2 ln(y^2 + 1) + arcTan(y) + ln | y - 1 | + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Let's integrate just y / (y^3 - y^2 + y - 1), then double the result.

The denominator factors by grouping:

y^3 - y^2 + y - 1 = (y^3 + y) - (y^2 + 1) = y ( y^2 + 1) - 1 ( y^2 + 1) = (y - 1) ( y^2 + 1).

Using partial fractions you would then have

(a y + b) /(y^2 + 1) + c /(y-1) = y / ( (y^2+1)(y-1)) where we need to evaluate a, b and c.

Putting the left-hand side over a common denominator (multiply the first fraction by (y-1)/(y-1) and the second by (y^2+1) / (y^2 + 1)) we obtain:

[ (a y + b)(y-1) + c(y^2+1) ] / ((y^2+1)(y-1)) = y / ((y^2+1)(y-1)).

The denominators are identical so the numerators are equal, giving us

(a y + b)(y-1) + c(y^2+1) = y, or

a y^2 + (-a + b) y - b + c y^2 + c = y. Grouping the left-hand side:

(a + c) y^2 + (-a + b) y + c - b = y. Since this must be so for all y, we have

a + c = 0 (this since the coefficient of y^2 on the right is 0)

-a + b = 1 (since the coefficient of y on the right is 1)

c - b = 0 (since there is no constant term on the right).

From the third equation we have b = c; from the first a = -c. So the second equation

becomes

c + c = 1, giving us 2 c = 1 so that c = 1/2.

Thus b = c = 1/2 and a = -c = -1/2.

Our integrand (a y + b) /(y^2 + 1) + c /(y-1) becomes

1/2 * (-y + 1 ) / (y^2 + 1) + 1/2 * 1 / (y-1), or

- 1/2 * y / (y^2 + 1) + 1/2 * 1 / (y^2 + 1) + 1/2 * 1 / (y-1).

An antiderivative is easily enough found with or without tables to be

-1/4 ln(y^2 + 1) + 1/2 arcTan(y) + 1/2 ln | y - 1 |

Doubling the result to get the integral of the given function we have

- 1/2 ln(y^2 + 1) + arcTan(y) + ln | y - 1 | + c,

where c now stands for an arbitrary integration constant.

DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Section 7.4 Problem 7

7.4.12 (previously 7.4.29 (4th edition)). Integrate (z-1)/`sqrt(2z-z^2) **** What did you get for your integral?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int{(z-1)/sqrt(2z-z^2)}

u = 2z - z^2

du = (2 - 2z) dz

(z - 1)dz = -du/2

(z-1)/sqrt(2z-z^2) = 1/sqrt(u) * (-du/2) = (-1/2)u^(-1/2) du

Int{(-1/2)u^(-1/2) du} = -u^(1/2) + C = -sqrt(2z-z^2) + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If you let u = 2z - z^2 you get du = (2 - 2z) dz or -2(z-1) dz; thus (z-1) dz = -du / 2.

So (z-1) / `sqrt(2z - z^2) dz = 1 / sqrt(u) * (-du/2) = - .5 u^-.5 du, which integrates to

-u^.5. Translated in terms of the original variable z we get

-sqrt(2z-z^2).

If you let u = 2z - z^2 you get du = (2 - 2z) dz or -2(z-1) dz; thus (z-1) dz = -du / 2.

So (z-1) / `sqrt(2z - z^2) dz = 1 / sqrt(u) * (-du/2) = - .5 u^-.5 du, which integrates to

-u^.5. Translated in terms of the original variable z we get

-sqrt(2z-z^2).

DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: Section 7.4 Problem 9

7.4.9 (previously 7.4.36) partial fractions for 1 / (x (L-x))

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Partial Fractions for 1 / [x (L-x)]

1 / [x (L-x)] = a / x + b / (L-x)

= [ a (L-x) + bx ] / [ x(L-x)]

= [aL + (b-a)x] / [x(L-x)]

aL = 1; b - a = 0

a = 1/L

b = 1/L

= 1/x + b/(L-x) = 1/L [1/x + 1 / (L-x)]

Int{1/L [1/x + 1 / (L-x)]} =

1 / L [ln(x) - ln(L-x)]

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

a / x + b / (L-x) = [ a (L-x) + bx ] / [ x(L-x)] = [ a L + (b-a)x ] / [ x(L-x)].

This is equal to 1 / [ x(L-x) ].

So a L = 1 and (b-a) = 0.

Thus a = 1 / L, and since b-a=0, b = 1/L.

The original function is therefore 1 / x + b / (L-x) = 1 / L [ 1 / x + 1 / (L-x) ].

Integrating we get 1 / L ( ln(x) - ln(L-x) ) = 1 / L ln(x / (L-x) ). **

@&

You did.

ln(a) - ln(b) = ln(a/b), so

ln(x) - ln(L-x) = ln(x / (L-x) ).

*@

------------------------------------------------

Self-critique Rating: 2

*********************************************

Question: Section 7.4 Problem 6

7.4.6 (previously 7.4.40 (3d edition #28)). integrate (y+2) / (2y^2 + 3y + 1)

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int{(y+2) / (2y^2 + 3y + 1)}dy

(y+2) / (2y^2 + 3y + 1) =

(y + 2) / [(2y + 1)( y + 1)] =

(y + 2) / [2(y + 1/2)( y + 1)] =

1/2 * (y + 2) / [(y + 1/2)( y + 1)]

Formula 27.:

(cx + d) / [(x - a)(x - b)] = [1/(a-b)](ln|x - a| - ln|x - b|) + C

c = 1, d = 2, a = -1/2, b = -1

Int{(y+2) / (2y^2 + 3y + 1)}dy = [1/((-1/2)-(-1))](ln|x - (-1/2)| - ln|x - (-1)|) + C

= [1/(1/2)](ln|x + 1/2| - ln|x + 1|) + C

= 2 ln|x - (-1/2)| - ln|x - (-1)|)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(y+2) / (2y^2 + 3 y + 1) =

(y + 2) / ( (2y + 1) ( y + 1) ) =

(y + 2) / ( 2(y + 1/2) ( y + 1) ) =

1/2 * (y + 2) / ( (y + 1/2) ( y + 1) )

The expression

(y + 2) / ( (y + 1/2) ( y + 1) )

is of the form

(cx + d) / ( (x - a)(x - b) )

with c = 1, d = 2, a = -1/2 and b = -1.

Its antiderivative is given as

1 / (a - b) [ (ac + d) ln | x - a | - (bc + d) ln | x - b | ] + C.

The final result is obtained by substitution.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: Ok

STUDENT COMMENTS:

I have had some trouble figuring out this section. I couldn't figure out how to break down this denominator to make a partial fraction. Also I do not understand a step in the process in general.

In the #10 class notes it explains another problem: This one is 1/[(x -3)(x +5)]. I understand this part of the notes:

""""We know that when a fraction with denominator x-3 is added to a fraction with denominator x+5 we will obtain a fraction whose denominator is (x-3)(x+5).

We conclude that it must be possible to express the given fraction as the sum A / (x-3) + B / (x+5), where A and B are numbers to be determined.

Setting the original fraction equal to the sum we obtain an equation for A and B, as expressed in the third line.

Multiplying both sides of the equation by (x-3) (x+5) we obtain the equation in the fourth line, which we rearrange to the form in the fifth line by collecting the x terms and the constant terms on the left-hand side and factoring.""

This part I do not understand:

""""Since the right-hand side does not have an x term, we see that A + B = 0""

How did you find that this equals 0?

INSTRUCTOR RESPONSE:

The equation for this function would be

• A / (x-3) + B / (x+5) = 1/[(x -3)(x +5)]

To simplify the left-hand side need to obtain a common denominator. We multiply the first term by (x + 5) / (x + 5), and the second term by (x - 3) / (x - 3):

A / (x-3) * (x + 5) / (x + 5) + B / (x+5) * (x - 3) / (x - 3) = 1/[(x -3)(x +5)] so that

A ( x + 5) / ( (x - 3) ( x + 5) ) + B ( x - 3) / ( (x - 3) (x + 5) ) = 1/[(x -3)(x +5)] . Adding the fractions on the left-hand side:

( A ( x + 5) + B ( x - 3) ) / ( ( x - 3) ( x + 5) ) = 1/[(x -3)(x +5)] . Simplifying the numerator we have

( (A + B) x + (5 A - 3 B) ) / ( ( x - 3) ( x + 5) ) = 1/[(x -3)(x +5)]. The denominators are equal, so the equation is solved if the numerators are equal:

(A + B) x + (5 A - 3 B) = 1.

It is this last equation which lacks an x term on the right-hand side. To maintain equality the left-hand side must also have no x term, which can be so only if A + B = 0.

The other term 5 A - 3 B is equal to 1.

Thus we have the simultaneous equations

A + B = 0

5 A - 3 B = 1.

These equations are easily solve, yielding the solution A = 1/8, B = -1/8.

CONTINUED STUDENT COMMENT:

I understand this:

""""we see that therefore 5A - 3B = 1, so we have two equations in two unknowns A and B.""""

I could not figure out how you found A and B as shown below:

Solving these equations we obtain B = -1/8, A = 1/8, as indicated.

We conclude that the expression to be integrated is A / (x-3) + B / (x+5) = 1/8 * 1/(x-3) - 1/8 * 1/(x+5).

INSTRUCTOR RESPONSE

The system

A + B = 0

5 A - 3 B = 1.

can be solved by elimination or substitution.

Using substitution:

Solve the first equation for A, obtaining A = -B.

Substitute this value of A into the second equation. obtaining

5 * (-B) + (-3 B) = 1

so that

-8 B = 1 and

B = -1/8.

Go back to the fact that A = -B to obtain

A = - (-1/8) = 1/8.

To solve by elimination you could add 3 times the first equation to the second, eliminating B and obtaining

8 A = 1, so that

A = 1/8.

Substituting this back into the first equation we obtain

1/8 + B = 0 so that

B = -1/8.

*********************************************

Question: `q006. Integrate (t + 3) / (t^2 - 5 t + 6).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int{(t + 3) / (t^2 - 5 t + 6)} = (t + 3) / [(t - 6)(t + 1)]

Formula 27:

Int{(cx + d) / [(x - a)(x - b)]} dx =

[1/(a - b)] [(ac + d) ln|x - a| - (bc + d) ln|x - b|] + C

c = 1; d = 3; a = 6; b = -1

Int{(t + 3) / [(t - 6)(t + 1)]}

= [1/(6 - (-1))] [((6)(1) + (3)) ln|x - (6)| - ((-1)(1) + (3)) ln|x - (-1)|] + C

= (1/7) (9 ln|x - 6| - 2 ln|x + 1|) + C

= (9/7) ln|x - 6| - (2/7) ln|x + 1| + C

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

------------------------------------------------

Self-critique Rating: OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. See my notes. Let me know if you have any questions. &#