Assignment 0 

course Phy121

September 6, 2009 around 4:00 pm

ph1 query 0xxxx

Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.

Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.

Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.

*********************************************

Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.

Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:

• The lack of precision of the TIMER program.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The timer program should be set and have very little discrepancies within it.

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv It is possible that the person clicking the mouse to start and stop the timer reactions can very.

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The discrepancies could be from the person actually releasing with different forces and times.

• Differences in positioning the object prior to release.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The object position should be fairly close depending on the size of the tube the ball is rolling down. The ball should start at the same spot each time.

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Sometimes this could be hard to tell especially if this person is trying to watch the ball and stop the timer also.

*********************************************

Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?

• The lack of precision of the TIMER program.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Minimal.

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Fairly significant since this would depend on the reflex time of the human.

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The would depend on the place that the ball started traveling from.

• Differences in positioning the object prior to release.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Fairly significant depending on the location of the ball on the tube when released for travel.

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv This would depend on the reflex also of the human. The delayed reaction time of the person watching the ball and then clicking the mouse to actually stop the timer.

*********************************************

Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.

• The lack of precision of the TIMER program.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Very little since the timer is setup by a program.

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Practice reflex time. Maybe even time reflex reaction time to see what the variation in it would be then calculate it into the equation.

• Actual differences in the time required for the object to travel the same distance.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Make sure that each time the ball starts in the same location and released with the same force.

• Differences in positioning the object prior to release.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Make the location to ball is to be released from and make sure that it starts travel from this position each time.

• Human uncertainty in observing exactly when the object reached the end of the incline.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Click the mouse to stop the timer each time the ball reaches the point. It may be possible to mark this point so that the human would be aware of when the ball reaches that point.

*********************************************

Question: If, as in the object-down-an-incline experiment, you know the distance an object rolls down an incline and the time required, explain how you will use this information to find the object 's average speed on the incline?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: You would use this information to find the average speed on the incline by taking the time and dividing by the distance traveled to get the average speed.

confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: If an object travels 40 centimeters down an incline in 5 seconds then what is its average velocity on the incline? Explain how your answer is connected to your experience.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 40 cm / 5 sec = 8cm/sec.

confidence rating: 2. I am not sure what you are asking as far as how this is connected to my experience.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: If the same object requires 3 second to reach the halfway point, what is its average velocity on the first half of the incline and what is its average velocity on the second half?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 20 cm / 3sec = 6.67 cm/sec. average velocity for first half and 20 cm /2 sec = 10 cm/sec for the second half.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qAccording to the results of your introductory pendulum experiment, do you think doubling the length of the pendulum will result in half the frequency (frequency can be thought of as the number of cycles per minute), more than half or less than half?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: Doubling the length will make half the frequency due to the pendulum having to travel greater distance in cycle. Cycle will be slower.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qNote that for a graph of y vs. x, a point on the x axis has y coordinate zero and a point on the y axis has x coordinate zero. In your own words explain why this is so.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 0 will fall on x and y axis because it is the intersection of the two axis.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qOn a graph of frequency vs. pendulum length (where frequency is on the vertical axis and length on the horizontal), what would it mean for the graph to intersect the vertical axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the vertical axis)? What would this tell you about the length and frequency of the pendulum?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: There would be an increase for the line to rise through the vertical axis.

confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qOn a graph of frequency vs. pendulum length, what would it mean for the graph to intersect the horizontal axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the horizontal axis)? What would this tell you about the length and frequency of the pendulum?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: There would be a decrease in the frequency.

confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qIf a ball rolls down between two points with an average velocity of 6 cm / sec, and if it takes 5 sec between the points, then how far apart are the points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 30 cm apart. We get this by (6 cm/sec) * 5 sec = 30 cm

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aOn the average the ball moves 6 centimeters every second, so in 5 seconds it will move 30 cm.

The formal calculation goes like this:

• We know that vAve = `ds / `dt, where vAve is ave velocity, `ds is displacement and `dt is the time interval.

• It follows by algebraic rearrangement that `ds = vAve * `dt.

• We are told that vAve = 6 cm / sec and `dt = 5 sec. It therefore follows that

• `ds = 6 cm / sec * 5 sec = 30 (cm / sec) * sec = 30 cm.

The details of the algebraic rearrangement are as follows:

• vAve = `ds / `dt. We multiply both sides of the equation by `dt:

• vAve * `dt = `ds / `dt * `dt. We simplify to obtain

• vAve * `dt = `ds, which we then write as{}`ds = vAve *`dt

Be sure to address anything you do not fully understand in your self-critique.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: I understand how you arrive at this solution.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qYou were asked to read the text and some of the problems at the end of the section. Tell your instructor about something in the text you understood up to a point but didn't understand fully. Explain what you did understand, and ask the best question you can about what you didn't understand.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: I worked the problems in the text and found them to be understandable over all.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*********************************************

Question: `qTell your instructor about something in the problems you understand up to a point but don't fully understand. Explain what you did understand, and ask the best question you can about what you didn't understand.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: I understood most of the questions and what you were asking for .

SOME COMMON QUESTIONS:

*********************************************

QUESTION: I didn’t understand how to calculate uncertainty for a number such as 1.34. When given examples we had problems such as 1.34 ±0.5 and with that we had a formula (0.5/1.34)*100. So I do not understand how to compute uncertainty when no estimated uncertainty is given.

INSTRUCTOR RESPONSE:

The +- number is the uncertainty in the measurement.

The percent uncertainty is the uncertainty, expressed as a percent of the number being observed.

So the question in this case is simply, 'what percent of 1.34 is 0.5?'.

• 0.5 / 1.34 = .037, approximately. So 0.5 is .037 of 1.34.

• .037 is the same as 3.7%.

I recommend understanding the principles of ratio, proportion and percent as opposed to using a formula. These principles are part of the standard school curriculum, though it does not appear that these concepts have been well mastered by the majority of students who have completed the curriculum. However most students who have the prerequisites for this course do fine with these ideas, after a little review. It will in the long run save you time to do so.

There are numerous Web resources available for understanding these concepts. You should check out these resources and let me know if you have questions.

*********************************************

QUESTION: I understood the main points of changing the different units, but I’m not sure when in the problem I should change the number to 10 raised to a certain power. In example 1-8 I did not understand why they changed 70 beats/min to 2 x 10^9 s.

2 * 10^9 is about the number of seconds in 70 years.

70 beats / min were not changed to 2 * 10^9 seconds; in changing the beats / minute to beats in a lifetime, there was a step where it was necessary to multiply by 2 * 10^9 seconds.

The example actually used 80 beats / min as a basis for the solution. This was converted to beats / second by the calculation

80 beats / min * 1 minute / (60 seconds), which would yield about 1.33 beats / second.

This was then multiplied by 2 * 10^9 seconds to get the number of beats in a lifetime:

2 * 10^9 seconds * 1.33 beats / second = 3 * 10^9 beats.

In the given solution 80 beats / min * 1 minute / (60 seconds) was not actually calculated; instead 80 beats / min * 1 minute / (60 seconds) was multiplied by 2 * 10^9 seconds in one step

80 beats / min * 1 minute / (60 seconds) * 2 * 10^9 seconds = 3 * 10^9 beats.

In your instructor's opinion the unit 'beats' should have been left in the result; the text expressed the result simply as 3 * 10^9, apparently ignoring the fact that the unit 'beats' was included in the quantities on the left-hand side.

Also the text identified this number as 3 trillion. In the British terminology this would be correct; in American terminology this number would be 3 billion, not 3 trillion.

COMMENT:

I thought that these problems were pretty basic and felt that I understood them well. However, when I got to questions 14 (determine your own mass in kg) and 15 (determining how many meters away the Sun is from the Earth), I did not understand how to complete these. I know my weight in pounds, but how can that be converted to mass in kilograms? I can look up how to convert miles to meters, but is this something I should already know?

INSTRUCTOR RESPONSE:

Both of these questions could be answered knowing that an object with a mass of 1 kg has a weight of 2.2 lb, and that an inch is 2.54 centimeters. This assumes that you know how many feet in a mile, and that the Sun is 93 million miles away. All these things should be common knowledge, but it doesn't appear to be so.

For my own weight I would reason as follows:

I weigh 170 lb and every kg of my mass weighs 2.2 lb. I'll have fewer kg of mass than I will pounds of weight, so it's reasonable to conclude that my mass is 170 / 2.2 kg, or about 78 kg.

More formally 170 lb * (1 kg / (2.2 lb) ) = 170 / 2.2 kg = 78 kg, approx.. (technical point: this isn't really right because pounds and kilograms don't measure the same thing--pounds measure force and kg measure mass--but we'll worry about that later in the course).

Converting 93 million miles to kilometers:

93 million miles * (5280 feet / mile) * (12 inches / foot) * (2.54 cm / inch) * (1 meter / (100 cm) ) = 160 billion meters (approx.) or 160 million kilometers.

Please feel free to include additional comments or questions:

&#I need to see the questions so I can be sure what your answers mean. Most of the time I can tell, but I'm dealing with information that comes in from over 1000 different files, containing a total of about 10 000 questions. While I'm familiar with the content and sequencing of the questions, having written them all, and know what I'm looking for, different students will answer these questions in different ways and I need to be able to relate your answers to the specific wording of each question. When reviewing my responses you will also need to be able to relate your answers and my comments to the specifics of the original document. So it will be important for you to insert your responses into a copy of the original document, according to instructions, without otherwise changing any of the content of the original document. This will ensure you of the best possible feedback on your work. &#