assign 19

course mth173

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

019. `query 19

*********************************************

Question: `qQuery problem 3.4.29 (3d edition 3.4.20) was 4.4.12 Derivative of `sqrt( (x^2*5^x)^3

What is the derivative of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Simplify the equation

Sort(x^2 *5^x)^3

(x^2*5^x)^3/2

f(g(x)) = f’g * fg(x)

f(z) = z^3/2

g(x) = x^2*5^x

F’g=2x*5^x

G’f= x^2ln5*5^x

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The function is `sqrt( (x^2 * 5^x)^3 ) = (x^2 * 5^x)^(3/2).

This is of form f(g(x)) with g(x) = x^2 * 5^x and f(z) = z^(3/2). Thus when you substitute you get f(g(x)) = g(x)^(3/2) = (x^2 * 5^x)^(3/2).

(x^2 * 5^x) ' = (x^2)' * 5^x + x^2 * (5^x) ' =

2x * 5^x + x^2 ln 5 * 5^x =

(2x + x^2 ln 5) * 5^x.

`sqrt(z^3) = z^(3/2), so using w(x) = f(g(x)) with f(z) = z^(3/2) and g(x) = x^2 * 5^x we get

w ' = (2x + x^2 ln 5) * 5^x * [3/2 (x^2 * 5^x)^(1/2)] = 3/2 (2x + x^2 ln 5) * | x | * 5^(3/2 x).

Note that sqrt(x^2) is | x |, not just x, since the square root must be positive and x might not be. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qQuery problem 3.4.28 (3d edition 3.4.19) (was 4.4.20) derivative of 2^(5t-1).

What is the derivative of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2^(5t-1)

f(g(x)

g(x) =5t-1

Fz= 2^x

Fz’= ln2*2^z

G’= 5

f(g(x))= f’g + fg’

5ln2* 2^5t-1

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThis function is a composite. The inner function is g(x)=5t-1 and the outer function is f(z)=2^z.

f'(z)=ln(2) * 2^z.

g ' (x)=5

so

(f(g(t)) ' = g ' (t)f ' (g(t))=

5 ln(2) * 2^(5t-1).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): derivative = derivative of g * derivative of f * original equaiton?

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q**** Query 3.4.68 (3d edition 3.4.56) y = k (x), y ' (1) = 2.

What is the derivative of k(2x) when x = 1/2?

What is the derivative of k(x+1) when x = 0?

{]What is the derivative of k(x/4) when x = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using the chain rule f(g(x)) = g’x * f(g(x))

k(2x)= k’2x * 2x’= 2k2x

Gx= 2x

f(g(x))= k(2x)

Y = k(x) = 2 * k(2*.5) = 4

k(x+1)’ = 2(0 + 1) = 2

K(x/4)’ = gx’ * fgx’

Gx = x/4= x’=1 so 1/ 4

Fgx = k (x/4)

k(x/4) = ¼ * k(4/4) = 1/ 4 * 2(1) = 1.5

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** We apply the Chain Rule:

( k(2x) ) ' = (2x) ' * k'(2x) = 2 k(2x).

When x = 1/2 we have 2x = 1.

k ' (1) = y ' (1) = 2 so

when x = 1/2

( k(2x) ) ' = 2 k(2 * 1/2) = 2 * k'(1) = 2 * 2 = 4.

(k(x+1)) ' = (x+1)' k ' (x+1) = k ' (x+1) so

when x = 0 we have

(k(x+1) ) ' = k ' (x+1) = k ' (1) = 2

(k(x/4)) ' = (x/4)' k'(x/4) = 1/4 * k'(x/4) so when x = 4 we have

(k(x/4))' = 1/4 * k'(x/4) = 1/4 k'(4/4) = 1/4 * 2 = 1/2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): derivative of x will always be 1

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qQuery 3.4.81 (3d edition 3.4.68). Q = Q0 e^(-t/(RC)). I = dQ/dt.

Show that Q(t) and I(t) both have the same time constant.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Chain rule = f(g(x)) = g’x * f(gx))’

Gx = -t/(RC) * e^(-t/(RC))

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** We use the Chain Rule.

(e^(-t/(RC)))' = (-t/(RC))' * e^(-t/(RC)) = -1/(RC) * e^(-t/(RC)).

So dQ/dt = -Q0/(RC) * e^(-t/(RC)).

Both functions are equal to a constant factor multiplied by e^(-t/(RC)).

The time constant for both functions is therefore identical, and equal to RC. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): this problem is confusing because it doesn’t seem like we found the derivative at all just separated out the problem into the components.

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qQuery problem 3.5.5 (unchanged since 3d edition) (formerly 4.5.6). What is the derivative of sin(3x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f(g(x))= gx * f(gx)

Gx’ = 3

f(gx) = cos(gx)

f(g(x))’ = 3cos3x

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** sin(3x) is the composite of g(x) = 3x, which is the 'inner' function (the first function that operates on the variable x) and the 'outer' function f(z) = sin(z).

Thus f(g(x)) = sin(g(x)) = sin(3x).

The derivative is (f (g(x) ) ' = g ' (x) * f' ( g(x) ).

g ' (x) = (3x) ' = 3 * x ' = 3 ', and

f ' (z) = (sin(z) ) ' = cos(z).

So the derivative is [ sin(3x) ] ' = ( f(g(x) ) ' = g ' (x) * f ' (g(x) ) = 3 * cos(3x). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qQuery problem 3.5.48 (3d edition 3.5.50) (formerly 4.5.36). Give the equations of the tangent lines to graph of y = sin(x) at x = 0 and at `pi/3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y=sinx

Y’=slope=cosx = cos0=1

y= sin1 =0

(0,0) with slope of 1

y=mx +b = y-0= 1(x-0)

y=1x

y=sin(pi/3)

Gx‘= pi/3

F(gx)’= cospi/3

Sqrt3/2 * cospi/3 = .5 slope

y=mx+ b

Y-y2 = .5 (x-pi/3)

Y = .5x - .5(pi/3) + y2

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** At x = 0 we have y = 0 and y ' = cos(0) = 1.

The tangent line is therefore the line with slope 1 through (0,0), so the line is y - 0 = 1 ( x - 0) or just y = x.

At x = `pi/3 we have y = sin(`pi/3) = `sqrt(3) / 2 and y ' = cos(`pi/3) = .5.

Thus the tangent line has slope .5 and passes thru (`pi/3,`sqrt(3)/2), so its equation is

y - `sqrt(3)/2 = .5 (x - `pi/3)

y = .5 x - `pi/6 + `sqrt(3)/2. Approximating:

y - .87 = .5 x - .52. So

y = .5 x + .25, approx.

Our approximation to sin(`pi/6), based on the first tangent line:

The first tangent line is y = x. So the approximation at x = `pi / 6 is

y = `pi / 6 = 3.14 / 6 = .52, approximately.

Our approximation to sin(`pi/6), based on the second tangent line, is:

y = .5 * .52 + .34 = .60.

`pi/6 is equidistant from x=0 and x=`pi/3, so we might expect the accuracy to be the same whichever point we use.

The actual value of sin(`pi/6) is .5. The approximation based on the tangent line at x = 0 is .52, which is much closer to .5 than the .60 based on the tangent line at x = `pi/3.

The reason for this isn't too difficult to see. The slope is changing more quickly around x = `pi/3 than around x = 0. Thus the tangent line will more more rapidly away from the actual function near x = `pi/3 than near x = `pi/2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): when finding g’x did the equation change? It does not look like we incorp. In finding the tan line equation.

------------------------------------------------

Self-critique rating #$&*2

*********************************************

Question: `qQuery 3.5.34 (3d edition 3.5.40). Der of sin(sin x + cos x)

What is the derivative of the given function and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f(g(x)) = gx’ * f(z)’

f(z) = f(g(x))

Gx= sinx + cosx

Fz= sinz

G’x = cosx - sinx

Fz‘= cos(gx)

f(gx)’ = cosx-sinx * cos(cosx-sinx) =

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe function y = sin( sin(x) + cos(x) ) is the composite of g(x) = sin(x) + cos(x) and f(z) = sin(z).

The derivative of the composite is g ' (x) * f ' (g(x) ).

g ' (x) = (sin(x) + cos(x) ) ' = cos(x) - sin(x).

f ' (z) = sin(z) ' = cos(z).

So g ' (x) * f ' (g(x)) = ( cos(x) - sin(x) ) * cos( sin(x) + cos(x) ).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): more comfortable with derivatives however I still have trouble with some of the various rules of finding derivatives. Exaples are when there is a fraction and pi variable.

------------------------------------------------

Self-critique rating #$&*

"

&#This looks good. Let me know if you have any questions. &#