A-007-Rates

course PHY 231

*********************************************

Question: `q001. The graph of a certain function is a smooth curve passing through the points (3, 5), (7, 17) and (10, 29).

Between which two points do you think the graph is steeper, on the average?

Why do we say 'on the average'?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The graph is steeper between points (10,29) and (7,17) then it is between (7,17) and (3,5) because the slope is 4 between the first two and the slope is 3 between the other two.

I get these slopes by subtracting the difference in y values over the difference in x values. These points are measured on the average because the graph is a smooth curve and not a straight line so the slope is not constant between the different points.

confidence rating #$&* OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aSlope = rise / run.

Between points (7, 17) and (10, 29) we get rise / run = (29 - 17) / (10 - 7) =12 / 3 = 4.

The slope between points (3, 5) and (7, 17) is 3 / 1. (17 - 5) / (7 -3) = 12 / 4 = 3.

The segment with slope 4 is the steeper. The graph being a smooth curve, slopes may vary from point to point. The slope obtained over the interval is a specific type of average of the slopes of all points between the endpoints.

2. Answer without using a calculator: As x takes the values 2.1, 2.01, 2.001 and 2.0001, what values are taken by the expression 1 / (x - 2)?

1. As the process continues, with x getting closer and closer to 2, what happens to the values of 1 / (x-2)?

2. Will the value ever exceed a billion? Will it ever exceed one trillion billions?

3. Will it ever exceed the number of particles in the known universe?

4. Is there any number it will never exceed?

5. What does the graph of y = 1 / (x-2) look like in the vicinity of x = 2?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

When x is 2.1 then you will have ten and as it moves over each decimal place the numerator gradually gets bigger by another 0 added to the end so it would be 10,100,1000,10000. Therefore as the process continues to get closer to 2 the numerator is constantly getting larger. The smaller it gets these values could reach billions and trillions because it would be dividing by such a minute number. Yes it will exceed the number of particles known in the universe it is going to be an infinite number. There is no number it will never exceed because it is infinite. The graph will look like at x=2 an asymptote where the line is constantly getting closer and closer to two but never quite making it there.

confidence rating #$&* OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aFor x = 2.1, 2.01, 2.001, 2.0001 we see that x -2 = .1, .01, .001, .0001. Thus 1/(x -2) takes respective values 10, 100, 1000, 10,000.

It is important to note that x is changing by smaller and smaller increments as it approaches 2, while the value of the function is changing by greater and greater amounts.

As x gets closer in closer to 2, it will reach the values 2.00001, 2.0000001, etc.. Since we can put as many zeros as we want in .000...001 the reciprocal 100...000 can be as large as we desire. Given any number, we can exceed it.

Note that the function is simply not defined for x = 2. We cannot divide 1 by 0 (try counting to 1 by 0's..You never get anywhere. It can't be done. You can count to 1 by .1's--.1, .2, .3, ..., .9, 1. You get 10. You can do similar thing for .01, .001, etc., but you just can't do it for 0).

As x approaches 2 the graph approaches the vertical line x = 2; the graph itself is never vertical. That is, the graph will have a vertical asymptote at the line x = 2. As x approaches 2, therefore, 1 / (x-2) will exceed all bounds.

Note that if x approaches 2 through the values 1.9, 1.99, ..., the function gives us -10, -100, etc.. So we can see that on one side of x = 2 the graph will approach +infinity, on the other it will be negative and approach -infinity.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q003. One straight line segment connects the points (3,5) and (7,9) while another connects the points (10,2) and (50,4). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Try to justify your answer with something more precise than, for example, 'from a sketch I can see that this one is much bigger so it must have the greater area'.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

When I drew the graph out on paper I figured out the area for both trapezoids. I broke both of them up into two segments one being a rectangle and the other being a triangle. I found the area for both of them and the first one had an area of 28 and the second one had an area of 120. Therefore based on my calculations the second trapezoid of (10,2) and (50,4) has the biggest area.

confidence rating #$&* OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aYour sketch should show that while the first trapezoid averages a little more than double the altitude of the second, the second is clearly much more than twice as wide and hence has the greater area.

To justify this a little more precisely, the first trapezoid, which runs from x = 3 to x = 7, is 4 units wide while the second runs from x = 10 and to x = 50 and hence has a width of 40 units. The altitudes of the first trapezoid are 5 and 9,so the average altitude of the first is 7. The average altitude of the second is the average of the altitudes 2 and 4, or 3. So the first trapezoid is over twice as high, on the average, as the first. However the second is 10 times as wide, so the second trapezoid must have the greater area.

This is all the reasoning we need to answer the question. We could of course multiply average altitude by width for each trapezoid, obtaining area 7 * 4 = 28 for the first and 3 * 40 = 120 for the second. However if all we need to know is which trapezoid has a greater area, we need not bother with this step.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q004. If f(x) = x^2 (meaning 'x raised to the power 2') then which is steeper, the line segment connecting the x = 2 and x = 5 points on the graph of f(x), or the line segment connecting the x = -1 and x = 7 points on the same graph? Explain the basisof your reasoning.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The first set of x=2 and 5 has a greater slope than the second set. When I graphed them and found the slopes for both of them, I found that the first set had a slope of 7 and the second set had a slope of 6. Therefore the first set is a shorter line and has a steeper slope

confidence rating #$&* OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe line segment connecting x = 2 and the x = 5 points is steeper: Since f(x) = x^2, x = 2 gives y = 4 and x = 5 gives y = 25. The slope between the points is rise / run = (25 - 4) / (5 - 2) = 21 / 3 = 7.

The line segment connecting the x = -1 point (-1,1) and the x = 7 point (7,49) has a slope of (49 - 1) / (7 - -1) = 48 / 8 = 6.

The slope of the first segment is greater.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q005. Suppose that every week of the current millenium you go to the jewler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time ( this is so), that the the gold remains undisturbed (maybe, maybe not so), that no other source adds gold to your backyard (probably so), and that there was no gold in your yard before..

1. If you construct a graph of y = the number of grams of gold in your backyard vs. t = the number of weeks since Jan. 1, 2000, with the y axis pointing up and the t axis pointing to the right, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly?

2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week.

{}3. Answer the same question assuming that every week you bury half the amount you did the previous week.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The line will be a constant increasing slope as long as the amount of grams purchased every week is the same amount.

If you bury one more gram than the previous week every week than the slope will be increasing faster and faster because the proportion will not be equal anymore.

If you bury half the amount every week than the line will be increasing because you are still adding gold but it will be at a decreased rate when each time interval takes place

confidence rating #$&* OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a1. If it's the same amount each week it would be a straight line.

2. Buying gold every week, the amount of gold will always increase. Since you buy more each week the rate of increase will keep increasing. So the graph will increase, and at an increasing rate.

3. Buying gold every week, the amount of gold won't ever decrease. Since you buy less each week the rate of increase will just keep falling. So the graph will increase, but at a decreasing rate. This graph will in fact approach a horizontal asymptote, since we have a geometric progression which implies an exponential function.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I disagree with your first answer where you have it as a straight line because the question says that each week more gold is purchased and buried in the yard at a constant amount purchased. Because of that the y value would have to increase because each week more gold is being added so you would have an increasing straight line? For example if you buy 1 gram each week and bury it, well the first week you have one gram, the second week you would add another so then there is 2 grams and etc.

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q006. Suppose that every week you go to the jewler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time, that the the gold remains undisturbed, and that no other source adds gold to your backyard.

1. If you graph the rate at which gold is accumulating from week to week vs. tne number of weeks since Jan 1, 2000, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly?

2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week.

3. Answer the same question assuming that every week you bury half the amount you did the previous week.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1) The graph will be a rising straight line because it is a constant amount being added

2) This graph will look like a parabola constantly increasing with time

3) This graph will start out increasing fast and then slowly taper off into more of a horizontal line eventually reaching an asymptote at some y value.

confidence rating #$&* OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThis set of questions is different from the preceding set. This question now asks about a graph of rate vs. time, whereas the last was about the graph of quantity vs. time.

Question 1: This question concerns the graph of the rate at which gold accumulates, which in this case, since you buy the same amount eact week, is constant. The graph would be a horizontal straight line.

Question 2: Each week you buy one more gram than the week before, so the rate goes up each week by 1 gram per week. You thus get a risingstraight line because the increase in the rate is the same from one week to the next.

Question 3. Since half the previous amount will be half of a declining amount, the rate will decrease while remaining positive, so the graph remains positive as it decreases more and more slowly. The rate approaches but never reaches zero.

I feel like I am having trouble visualizing these graphs because every time for the first one I picture an increasing straight line

``q007. If the depth of water in a container is given, in centimeters, by 100 - 2 t + .01 t^2, where t is clock time in seconds, then what are the depths at clock times t = 30, t = 40 and t = 60? On the average is depth changing more rapidly during the first time interval or the second?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The first value for t by plugging it in I get 49, the second value I get 36, and the final value I get 16. If you take the differences between the first and second and the second and third you will find that there is a change of 13cm/10s and 20cm/20s. Therefore, on the average depth changes more rapidly during the first time interval.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt t = 30 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 30 + .01 * 30^2 = 49.

At t = 40 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 40 + .01 * 40^2 = 36.

At t = 60 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 60 + .01 * 60^2 = 16.

49 cm - 36 cm = 13 cm change in 10 sec or 1.3 cm/s on the average.

36 cm - 16 cm = 20 cm change in 20 sec or 1.0 cm/s on the average.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q008. If the rate at which water descends in a container is given, in cm/s, by 10 - .1 t, where t is clock time in seconds, then at what rate is water descending when t = 10, and at what rate is it descending when t = 20? How much would you therefore expect the water level to change during this 10-second interval?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

When t=10 then water descents at a rate of 9cm/s and when t=20 water descends at a rate of 8cm/s. Therefore I would expect the water to change 1cm/s during each ten seconds because it is a function of time. The average change between these two intervals would be 8.5cm/s so for every ten seconds it would be 85cm.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAt t = 10 sec the rate function gives us 10 - .1 * 10 = 10 - 1 = 9, meaning a rate of 9 cm / sec.

At t = 20 sec the rate function gives us 10 - .1 * 20 = 10 - 2 = 8, meaning a rate of 8 cm / sec.

The rate never goes below 8 cm/s, so in 10 sec the change wouldn't be less than 80 cm.

The rate never goes above 9 cm/s, so in 10 sec the change wouldn't be greater than 90 cm.

Any answer that isn't between 80 cm and 90 cm doesn't fit the given conditions..

The rate change is a linear function of t. Therefore the average rate is the average of the two rates, or 9.5 cm/s.

The average of the rates is 8.5 cm/sec. In 10 sec that would imply a change of 85 cm.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&* 3

"

&#Good responses. Let me know if you have questions. &#

#$&*

A-007-Rates

course PHY 231

6/12 17:30

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

001. Rates

Note that there are 10 questions in this assignment. The questions are of increasing difficulty--the first questions are fairly easy but later questions are very tricky. The main purposes of these exercises are to refine your thinking about rates, and to see how you process challenging information. Most students in most courses would not be expected to answer all these questions correctly; all that's required is that you do your best and follows the recommended procedures for answering and self-critiquing your work.

*********************************************

Question: If you make $50 in 5 hr, then at what rate are you earning money?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

$50 / 5hr = $10/1hr = $10/hour

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The rate at which you are earning money is the number of dollars per hour you are earning. You are earning money at the rate of 50 dollars / (5 hours) = 10 dollars / hour. It is very likely that you immediately came up with the $10 / hour because almosteveryone is familiar with the concept of the pay rate, the number of dollars per hour. Note carefully that the pay rate is found by dividing the quantity earned by the time required to earn it.Time rates in general are found by dividing an accumulated quantity by the time required to accumulate it.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q003.If you make $60,000 per year then how much do you make per month?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 year = 12 months

$60,000 / 1 year

$ per month = A

A = ($60,000 / 1 year) * (1 year / 12 months) = $60,000 / 12 months = $5000 / 1 month = $5000 per month

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Most people will very quickly see that we need to divide $60,000 by 12 months, giving us 60,000 dollars / (12 months) = 5000 dollars / month. Note that again we have found a time rate, dividing the accumulated quantity by the time required to accumulate it.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q004. Suppose that the $60,000 is made in a year by a small business. Would be more appropriate to say that the business makes $5000 per month, or that the business makes an average of $5000 per month?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It would be more appropriate to say average since they could have made no money in one month and $10,000 the other month while still retaining $5000 the other months equaling out to $60,000 in the year.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Small businesses do not usually make the same amount of money every month. The amount made depends on the demand for the services or commodities provided by the business, and there are often seasonal fluctuations in addition to other market fluctuations. It is almost certain that a small business making $60,000 per year will make more than $5000 in some months and less than $5000 in others. Therefore it is much more appropriate to say that the business makes and average of $5000 per month.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q005. If you travel 300 miles in 6 hours, at what average rate are you covering distance, and why do we say average rate instead of just plain rate?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

300 miles / 6 hours = 50 miles / 1 hours = 50mph

This is an average rate because, similar to the last problem, the amount of miles covered every hour is not known, only the overall distance covered and the overall time that it took.

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The average rate is 50 miles per hour, or 50 miles / hour. This is obtained by dividing the accumulated quantity, the 300 miles, by the time required to accumulate it, obtaining ave rate = 300 miles / ( 6 hours) = 50 miles / hour. Note that the rate at which distance is covered is called speed. The car has an average speed of 50 miles/hour. We say 'average rate' in this case because it is almost certain that slight changes in pressure on the accelerator, traffic conditions and other factors ensure that the speed will sometimes be greater than 50 miles/hour and sometimes less than 50 miles/hour; the 50 miles/hour we obtain from the given information is clearly and overall average of the velocities.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q006. If you use 60 gallons of gasoline on a 1200 mile trip, then at what average rate are you using gasoline, with respect to miles traveled?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1200 miles / 60 gal. = 20 miles / 1 gal. = 20mpg on average

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The rate of change of one quantity with respect to another is the change in the first quantity, divided by the change in the second. As in previous examples, we found the rate at which money was made with respect to time by dividing the amount of money made by the time required to make it.

By analogy, the rate at which we use fuel with respect to miles traveled is the change in the amount of fuel divided by the number of miles traveled. In this case we use 60 gallons of fuel in 1200 miles, so the average rate it 60 gal / (1200 miles) = .05 gallons / mile.

Note that this question didn't ask for miles per gallon. Miles per gallon is an appropriate and common calculation, but it measures the rate at which miles are covered with respect to the amount of fuel used. Be sure you see the difference.

Note that in this problem we again have here an example of a rate, but unlike previous instances this rate is not calculated with respect to time. This rate is calculated with respect to the amount of fuel used. We divide the accumulated quantity, in this case miles, by the amount of fuel required to cover t miles. Note that again we call the result of this problem an average rate because there are always at least subtle differences in driving conditions that result in more or fewer miles covered with a certain amount of fuel.

It's very important to understand the phrase 'with respect to'. Whether the calculation makes sense or not, it is defined by the order of the terms.

In this case gallons / mile tells you how many gallons you are burning, on the average, per mile. This concept is not as familiar as miles / gallon, but except for familiarity it's technically no more difficult.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

STUDENT COMMENT

Very Tricky! I thought I had a rhythm going. I understand where I messed up. I am comfortable with the calculations.

INSTRUCTOR RESPONSE

There's nothing wrong with your rhythm.

As I'm sure you understand, there is no intent here to trick, though I know most people will (and do) tend to give the answer you did.

My intent is to make clear the important point that the definition of the terms is unambiguous and must be read carefully, in the right order.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I also did this backwards and will make sure to pay more attention to detail as it could affect my lab work.

------------------------------------------------

Self-critique rating #$&* 3

*********************************************

Question: `q007. The word 'average' generally connotes something like adding two quantities and dividing by 2, or adding several quantities and dividing by the number of quantities we added. Why is it that we are calculating average rates but we aren't adding anything?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The sums are already added. They are net totals.

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The word 'average' in the context of the dollars / month, miles / gallon types of questions we have been answering was used because we expect that in different months different amounts were earned, or that over different parts of the trip the gas mileage might have varied, but that if we knew all the individual quantities (e.g., the dollars earned each month, the number of gallons used with each mile) and averaged them in the usual manner, we would get the .05 gallons / mile, or the $5000 / month. In a sense we have already added up all the dollars earned in each month, or the miles traveled on each gallon, and we have obtained the total $60,000 or 1200 miles.Thus when we divide by the number of months or the number of gallons, we are in fact calculating an average rate.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I understand averages, it is just hard to explain it, even though I can visualize it in my head.

------------------------------------------------

Self-critique rating #$&*

*********************************************

Question: `q008. In a study of how lifting strength is influenced by various ways of training, a study group was divided into 2 subgroups of equally matched individuals. The first group did 10 pushups per day for a year and the second group did 50 pushups per day for year. At the end of the year to lifting strength of the first group averaged 147 pounds, while that of the second group averaged 162 pounds. At what average rate did lifting strength increase per daily pushup?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

50/day – 10/day = 40/day difference

162bs - 147lbs = 15lbs difference

Want X which is lbs/pushup average.

15lbs difference / 40 ppd = 0.375lbs per daily pushup

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The second group had 15 pounds more lifting strength as a result of doing 40 more daily pushups than the first. The desired rate is therefore 15 pounds / 40 pushups = .375 pounds / pushup.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

STUDENT COMMENT:

I have a question with respect as to how the question is interpreted. I used the interpretation given in the solution

to question 008 to rephrase the question in 009, but I do not see how this is the correct interpretation of the question as

stated.

INSTRUCTOR RESPONSE:

This exercise is designed to both see what you understand about rates, and to challenge your understanding a bit with concepts that aren't always familiar to students, despite their having completed the necessary prerequisite courses.

The meaning of the rate of change of one quantity with respect to another is of central importance in the application of mathematics. This might well be your first encounter with this particular phrasing, so it might well be unfamiliar to you, but it is important, unambiguous and universal.

You've taken the first step, which is to correctly apply the wordking of the preceding example to the present question.

You'll have ample opportunity in your course to get used to this terminology, and plenty of reinforcement.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I wasn’t sure if I should convert to pushups per year before I found the difference. I had to read the question a few times to figure it out.

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q009. In another part of the study, participants all did 30 pushups per day, but one group did pushups with a 10-pound weight on their shoulders while the other used a 30-pound weight. At the end of the study, the first group had an average lifting strength of 171 pounds, while the second had an average lifting strength of 188 pounds. At what average rate did lifting strength increase with respect to the added shoulder weight?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

30lbs – 10lbs = 20lbs extra difference

188lbs – 171lbs = 17lbs lifting strength difference

Want X which is lifting strength per shoulder weight

X = 17lbs / 20lbs = 0.85 lbs more lifting strength per lb of added training weight

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The difference in lifting strength was 17 pounds, as a result of a 20 pound difference in added weight. The average rate at which strength increases with respect added weight would therefore be 17 lifting pounds / (20 added pounds) = .85 lifting pounds / added pound. The strength advantage was .85 lifting pounds per pound of added weight, on the average.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q010. During a race, a runner passes the 100-meter mark 12 seconds after the start and the 200-meter mark 22 seconds after the start. At what average rate was the runner covering distance between those two positions?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Average rate means overall distance covered over the overall time changed.

200m-100m = 100m

22sec – 12sec = 10sec

100m/10sec = 10m/s

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The runner traveled 100 meters between the two positions, and required 10 seconds to do so. The average rate at which the runner was covering distance was therefore 100 meters / (10 seconds) = 10 meters / second.Again this is an average rate; at different positions in his stride the runner would clearly be traveling at slightly different speeds.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

STUDENT QUESTION

Is there a formula for this is it d= r*t or distance equal rate times time??????????????????

INSTRUCTOR RESPONSE

That formula would apply in this specific situation.

The goal is to learn to use the general concept of rate of change. The situation of this problem, and the formula you quote, are just one instance of a general concept that applies far beyond the context of distance and time.

It's fine if the formula helps you understand the general concept of rate. Just be sure you work to understand the broader concept.

Note also that we try to avoid using d for the name of a variable. The letter d will come to have a specific meaning in the context of rates, and to use d as the name of a variable invite confusion.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q011. During a race, a runner passes the 100-meter mark moving at 10 meters / second, and the 200-meter mark moving at 9 meters / second. What is your best estimate of how long it takes the runner to cover the 100 meter distance?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(10+9) / 2 = 19/2 = 9.5 m/s average

100m / (9.5m / 1sec) = (100m * 1sec) / (9.5m) = (100m/9.5m) * 1sec = 10.53(m/m) sec = 10.53 seconds

confidence rating #$&* 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

At 10 meters/sec, the runner would require 10 seconds to travel 100 meters. However the runner seems to be slowing, and will therefore require more than 10 seconds to travel the 100 meters. We don't know what the runner's average speed is, we only know that it goes from 10 m/s to 9 m/s. The simplest estimate we could make would be that the average speed is the average of 10 m/s and 9 m/s, or (10 m/s + 9 m/s ) / 2 = 9.5 m/s.Taking this approximation as the average rate, the time required to travel 100 meters will be (100 meters) / (9.5 m/s) = 10.5 sec, approx.. Note that simply averaging the 10 m/s and the 9 m/s might not be the best way to approximate the average rate--for example we if we knew enough about the situation we might expect that this runner would maintain the 10 m/s for most of the remaining 100 meters, and simply tire during the last few seconds. However we were not given this information, and we don't add extraneous assumptions without good cause. So the approximation we used here is pretty close to the best we can do with the given information.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `q012. We just averaged two quantities, adding them and dividing by 2, to find an average rate. We didn't do that before. Why we do it now?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Because we know each individual value and can add them. This information was not known in previous questions.

confidence rating #$&* 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

In previous examples the quantities weren't rates. We were given the amount of change of some accumulating quantity, and the change in time or in some other quantity on which the first was dependent (e.g., dollars and months, miles and gallons). Here we are given 2 rates, 10 m/s and 9 m/s, in a situation where we need an average rate in order to answer a question. Within this context, averaging the 2 rates was an appropriate tactic.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

STUDENT QUESTION:

I thought the change of an accumulating quantity was the rate?

INSTRUCTOR RESPONSE:

Quick response: The rate is not just the change in the accumulating quantity; if we're talking about a 'time rate' it's the change in the accumulating quantity divided by the time interval (or in calculus the limiting value of this ratio as the time interval approaches zero).

More detailed response: If quantity A changes with respect to quantity B, then the average rate of change of A with respect to B (i.e., change in A / change in B) is 'the rate'. If the B quantity is clock time, then 'the rate' tells you 'how fast' the A quantity accumulates. However the rate is not just the change in the quantity A (i.e., the change in the accumulating quantity), but change in A / change in B.

For students having had at least a semester of calculus at some level: Of course the above generalizes into the definition of the derivative. y ' (x) is the instantaneous rate at which the y quantity changes with respect to x. y ' (x) is the rate at which y accumulates with respect to x.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I understand this better now.

------------------------------------------------

Self-critique rating #$&* OK

"

&#Good work. Let me know if you have questions. &#

#$&*