course Mth 271
......!!!!!!!!...................................
......!!!!!!!!...................................
RESPONSE --> t = -2, z = t^2 = (-2)^2 = 4, y = e^z = e^4 = 54.598 t = -1, z = t^2 = (-1 )^2 = 1, y = e^z = e^1 = 2.718 t = -.5, z = t^2 = (-.5 )^2 = .25, y = e^z = e^.25 = 1.284 t = 0, z = t^2 = ( 0 )^2 = 0, y = e^z = e^0 = 1 t = .5, z = t^2 = (.5 )^2 = .25, y = e^z = e^.25 = 1.284 t = 1, z = t^2 = ( 1 )^2 = 1, y = e^z = e^1 = 2.718 t = 2, z = t^2 = ( 2 )^2 = 4, y = e^z = e^4 = 54.598 confidence assessment: 2
.................................................
......!!!!!!!!...................................
09:29:19 If t = -2, then z = t^2 = (-2)^2 = 4, so y = e^z = e^4 = 55, approx.. If t = -1, then z = t^2 = (-1 )^2 = 1, so y = e^z = e^1 = 2.72, approx.. If t = -.5, then z = t^2 = (-.5 )^2 = .25, so y = e^z = e^.25 = 1.28, approx. If t = 0, then z = t^2 = ( 0 )^2 = 0, so y = e^z = e^0 = 1. If t = .5, then z = t^2 = (.5 )^2 = .25, so y = e^z = e^.25 = 1.28, approx. If t = 1, then z = t^2 = ( 1 )^2 = 1, so y = e^z = e^1 = 2.72, approx.. If t = 2, then z = t^2 = ( 2 )^2 = 4, so y = e^z = e^4 = 55, approx..
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 2
.................................................
......!!!!!!!!...................................
09:29:36 `q002. If we evaluate the function y = e^(t^2) at t = -2, -1, -.5, 0, .5, 1, 2, what y values do we get?
......!!!!!!!!...................................
RESPONSE --> e^(-2)^2 = e^4 = 54.598 e^(-1)^2 = e^1 = 2.718 e^(-.5)^2 = e^.25 = 1.284 e^(0)^2 = e^0 = 1 e^(.5)^2 = e^.25 = 1.284 e^(1)^2 = e^1 = 2.718 e^(2)^2 = e^2 = 54.598 confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:29:42 If t = -2, then y = e^(t^2) = e^(-2)^2 = e^4 = 55, approx. If t = -1, then y = e^(t^2) = e^(-1)^2 = e^1 = 2.72, approx. If t = -.5, then y = e^(t^2) = e^(-.5)^2 = e^.25 = 1.28, approx. If t = 0, then y = e^(t^2) = e^(0)^2 = e^0 = 1. If t = .5, then y = e^(t^2) = e^(.5)^2 = e^.25 = 1.28, approx. If t = 1, then y = e^(t^2) = e^(1)^2 = e^1 = 2.72, approx. If t = 2, then y = e^(t^2) = e^(2)^2 = e^2 = 55, approx.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:29:54 `q003. We see from the preceding two examples that that the function y = e^(t^2) results from the 'chain' of simple functions z = t^2 and y = e^z. What would be the 'chain' of simple functions for the function y = cos ( ln(x) )?
......!!!!!!!!...................................
RESPONSE --> z = ln(x) y = cos(z) confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:29:58 The first function encountered by the variable x is the ln(x) function, so we will say that z = ln(x). The result of this calculation is then entered into the cosine function, so we say that y = cos(z). Thus we have y = cos(z) = cos( ln(x) ). We also say that the function y(x) is the composite of the functions cosine and natural log functions, i.e., the composite of y = cos(z) and z = ln(x).
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:30:08 `q004. What would be the chain of functions for y = ( ln(t) ) ^ 2?
......!!!!!!!!...................................
RESPONSE --> z = ln(t) y = z^2 confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:30:10 The first function encountered by the variable t is ln(t), so we say that z = ln(t). This value is then squared so we say that y = z^2. Thus we have y = z^2 = (ln(t))^2. We also say that we have here the composite of the squaring function and the natural log function, i.e., the composite of y = z^2 and z = ln(t).
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:30:21 `q005. What would be the chain of functions for y = ln ( cos(x) )?
......!!!!!!!!...................................
RESPONSE --> z = cos(x) y = ln(z) confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:30:24 The first function encountered by the variable is cos(x), so we say that z = cos(x). We then take the natural log of this function, so we say that y = ln(z). Thus we have y = ln(z) = ln(cos(x)). This function is the composite of the natural log and cosine function, i.e., the composite of y = ln(z) and z = cos(x).
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:30:41 `q006. The rule for the derivative of a chain of functions is as follows: The derivative of the function y = f ( g ( x) ) is y ' = g' ( x ) * f ' ( g ( x) ). For example if y = cos ( x^2 ) then we see that the f function is f(z) = cos(z) and the g function is the x^2 function, so that f ( g ( x) ) = f ( x^2 ) = cos ( x^2 ) . By the chain rule the derivative of this function will be (cos(x^2)) ' = g ' ( x) * f ' ( g ( x) ) . g(x) = x^2 so g'(x) = 2 x. f ( z ) = cos ( z) so f ' ( z ) = - sin( z ), so f ' ( g ( x ) ) = - sin ( g ( x ) ) = - sin ( x^2). Thus we obtain the derivative (cos(x^2)) ' = g ' ( x ) * f ' ( g ( x ) ) = 2 x * ( - sin ( x^2 ) ) = - 2 x sin ( x^2). Apply the rule to find the derivative of y = sin ( ln ( x ) ) .
......!!!!!!!!...................................
RESPONSE --> f(z) = sin(z) g(x) = ln(x) g ' (x) = ( ln(x) ) ' = 1/x f ' (z) = cos(z) y ' = g ' (x) * f ' (g(x)) = 1 / x * cos ( g(x) ) = 1 / x * cos( ln(x) ) confidence assessment: 2
.................................................
......!!!!!!!!...................................
09:30:45 We see that y = sin ( ln(x) ) is the composite f(g(x)) of f(z) = sin(z) and g(x) = ln(x). The derivative of this composite is g ' (x) * f ' ( g(x) ). Since g(x) = ln(x), we have g ' (x) = ( ln(x) ) ' = 1/x. Since f(z) = sin(z) we have f ' (z) = cos(z). Thus the derivative of y = sin( ln (x) ) is y ' = g ' (x) * f ' (g(x)) = 1 / x * cos ( g(x) ) = 1 / x * cos( ln(x) ). Note how the derivative of the 'inner function' g(x) = ln(x) appears 'out in front' of the derivative of the 'outer' function; that derivative is in this case the sine function.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 2
.................................................
......!!!!!!!!...................................
09:31:00 `q007. Find the derivative of y = ln ( 5 x^7 ) .
......!!!!!!!!...................................
RESPONSE --> f(z) = ln(z) g(x) = 5 x^7 f ' (z) = 1 / z g ' (x) = 35 x^6 y ' = g ' (x) * f ' (g(x)) = 35 x^6 * [ 1 / ( 5 x^7 ) ] confidence assessment: 2
.................................................
......!!!!!!!!...................................
09:31:03 For this composite we have f(z) = ln(z) and g(x) = 5 x^7. Thus f ' (z) = 1 / z and g ' (x) = 35 x^6. We see that f ' (g(x)) = 1 / g(x) = 1 / ( 5 x^7). So the derivative of y = ln( 5 x^7) is y ' = g ' (x) * f ' (g(x)) = 35 x^6 * [ 1 / ( 5 x^7 ) ]. Note again how the derivative of the 'inner function' g(x) = 5 x^7 appears 'out in front' of the derivative of the 'outer' function; that derivative is in this case the reciprocal or 1 / z function.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 2
.................................................
......!!!!!!!!...................................
09:31:44 `q008. Find the derivative of y = e ^ ( t ^ 2 ).
......!!!!!!!!...................................
RESPONSE --> f(z) = e^z g(t) = t^2 f ' (z) = e^z g ' (t) = 2t y ' = g ' (t) * f ' (g(t)) = 2 t * e^(t^2) confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:31:49 This function is the composite of f(z) = e^z and g(t) = t^2. We see right away that f ' (z) = e^z and g ' (t) = 2t. Thus the derivative of y = e^(t^2) is y ' = g ' (t) * f ' (g(t)) = 2 t * e^(t^2). Note once more how the derivative of the 'inner function' g(t) = t^2 appears 'out in front' of the derivative of the 'outer' function.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:32:01 `q009. Find the derivative of y = cos ( e^t ).
......!!!!!!!!...................................
RESPONSE --> f(z) = cos(z) z(t) = e^t f ' (z) = -sin(z) g ' (t) = e^t y ' = g ' (t) * f ' (g(t)) = e^t * -sin( e^t) = - e^t sin ( e^t) 3 confidence assessment:
.................................................
......!!!!!!!!...................................
09:32:04 We have the composite of f(z) = cos(z) and z(t) = e^t, with derivatives f ' (z) = -sin(z) and g ' (t) = e^t. Thus the derivative of y = cos ( e^t ) is y ' = g ' (t) * f ' (g(t)) = e^t * -sin( e^t) = - e^t sin ( e^t). Note how the 'inner function' is unchanged, as it has been in previous examples, and how its derivative appears in front of the derivative of the 'outer' function.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:32:15 `q010. Find the derivative of y = ( ln ( t ) ) ^ 9.
......!!!!!!!!...................................
RESPONSE --> f(z) = z^9 g(t) = ln(t) f ' (z) = 9 z^8 g ' (t) = 1 / t y ' = g ' (t) * f ' (g(t)) = 1/t * 9 ( ln(t) )^8 confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:32:18 We have y = f(g(t)) with f(z) = z^9 and g(t) = ln(t). f ' (z) = 9 z^8 and g ' (t) = 1 / t. Thus y ' = g ' (t) * f ' (g(t)) = 1/t * 9 ( ln(t) )^8.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:32:28 `q011. Find the derivative of y = sin^4 ( x ).
......!!!!!!!!...................................
RESPONSE --> f(z) = z^4 g(x) = sin(x) f ' (z) = 4 z^3 g ' (x) = cos(x) y ' = g ' (x) * f ' (g(x)) = cos(x) * 4 ( sin(x) ) ^ 3 = 4 cos(x) sin^3 (x) confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:32:30 The composite here is y = f(g(x)) with f(z) = z^4 and g(x) = sin(x). Note that the notation sin^4 means to raise the value of the sine function to the fourth power. We see that f ' (z) = 4 z^3 and g ' (x) = cos(x). Thus y ' = g ' (x) * f ' (g(x)) = cos(x) * 4 ( sin(x) ) ^ 3 = 4 cos(x) sin^3 (x).
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:32:40 `q012. Find the derivative of y = cos ( 3x ).
......!!!!!!!!...................................
RESPONSE --> f(z) = cos(z) g(x) = 3x f ' (z) = - sin(z) g ' (x) = 3 y ' = g ' (x) * f ' (g(x)) = 3 * (-sin (3x) ) = - 3 sin(3x) confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:32:42 This is the composite y = f(g(x)) with f(z) = cos(z) and g(x) = 3x. We obtain f ' (z) = - sin(z) and g ' (x) = 3. Thus y ' = g ' (x) * f ' (g(x)) = 3 * (-sin (3x) ) = - 3 sin(3x).
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
"