open qa 29

#$&*

course Mth 151

7/30

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

029. Variation

*********************************************

Question: `q001. Note that there are five questions in this set.

If y is proportional to x, and if y = 9 when x = 12, then what is the value of y when x = 32?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

9/12 = x/32 12x = 288/12 x=24

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is proportional to x is to say that there exists some constant number k such that y = k x. Using the given values of y and x we can determine the value of k:

Since y = 9 when x = 12, y = k x becomes

9 = k * 12. Dividing both sides by 12 we obtain

9 / 12 = k. Reducing and reversing sides we therefore obtain k =.75.

Now our proportionality reads y = .75 x. Thus when x = 32 we have

y = .75 * 32 = 24.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q002. If y is proportional to the square of x, and y = 8 when x = 12, then what is the value of y when x = 9?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

8 = 144k divide 144 and get 8/144 or 1/18 =k

y=9^2 *1/18k = 4.5

y=4.5

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is proportional to x is to say that there exists some constant number k such that y = k x^2. Using the given values of y and x we can determine the value of k:

Since y = 8 when x = 12, y = k x^2 becomes

8 = k * 12^2, or

8 = 144 k. Dividing both sides by 144 we obtain

k = 8 / 144 = 1 / 18.

Now our proportionality reads y = 1/18 x^2. Thus when x = 9 we have

y = 1/18 * 9^2 = 81 / 18 = 4.5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q003. If y is inversely proportional to x and if y = 120 when x = 200, when what is the value of y when x = 500?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=k / x

K= 120 *200 = 24000/ 500 = 24 so y = 24

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is inversely proportional to x is to say that there exists some constant number k such that y = k / x. Using the given values of y and x we can determine the value of k:

Since y = 120 when x = 200, y = k / x becomes

120 = k / 200. Multiplying both sides by 200 we obtain

k = 120 * 200 = 24,000.

Now our proportionality reads y = 24,000 / x. Thus when x = 500 we have

y = 24,000 / 500 = 480.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q004. If y is inversely proportional to the square of x and if y = 8 when x = 12, then what is the value of y when x = 16?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

K=8 *144= 1152/ 16^2 = 4.5

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is inversely proportional to the square of x is to say that there exists some constant number k such that y = k / x^2. Using the given values of y and x we can determine the value of k:

Since y = 8 when x = 12, y = k / x^2 becomes

8 = k / 12^2, or

8 = k / 144. Multiplying both sides by 144 we obtain

k = 8 * 144 = 1152.

Now our proportionality reads y = 1152 / x^2. Thus when x = 16 we have

y = 1152 / (16)^2 = 4.5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q005. If y is proportional to the square of x and inversely proportional to z, then if y = 40 when x = 10 and z = 4, what is the value of y when x = 20 and z = 12?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

40* 10 ^ 2/4= K=1000

At this point I’m confused. Not sure exactly how I should arrange the problem

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

To say that y is proportional to the square of x and inversely proportional to z is to say that the there exists a constant k such that y = k x^2 / z. Substituting the given values of x, y and z we can evaluate k:

y = k x^2 / z becomes

40 = k * 10^2 / 4. Multiplying both sides by 4 / 10^2 we obtain

40 * 4 / 10^2 = k, or

k = 1.6.

Our proportionality is now y = 1.6 x^2 / z, so that when x = 20 and z = 12 we have

y = 1.6 * 20^2 / 12 = 1.6 * 400 / 12 = 53 1/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I now know where I messed up, I became lost at the “multiplying both sides part” and from there I was completely lost.

------------------------------------------------

Self-critique Rating:2

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. Let me know if you have any questions. &#