Assign 5

course Phy 201

Your work has been received. Please scroll to the end of the document to see any inserted notes (in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

qgw{rˍcStudent assignment #004 003. Misc: Surface Area, Pythagorean Theorem, Density

......!!!!!!!!...................................

11:43:28 query Note that there are 10 questions in this assignment. At a certain instant the speedometer of a car reads 5 meters / second (of course cars in this country generally read speeds in miles per hour and km per hour, not meters / sec; but they could easily have their faces re-painted to read in meters/second, and we assume that this speedometer has been similarly altered). Exactly 4 seconds later the speedometer reads 25 meters/second (that, incidentally, indicates very good acceleration, as you will understand later). At what average rate is the speed of the car changing with respect to clock time?

......!!!!!!!!...................................

RESPONSE --> 5.25 m/s

.................................................

......!!!!!!!!...................................

11:43:58 The rate of change of the speed with respect clock time is equal to the change in the speed divided by the change in the clock time. So we must ask, what is the change in the speed, what is the change in the clock time and what therefore is the rate at which the speed is changing with respect to clock time? The change in speed from 5 meters/second to 25 meters/second is 20 meters/second. This occurs in a time interval lasting 4 seconds. The average rate of change of the speed is therefore (20 meters/second)/(4 seconds) = 5 meters / second / second. This means that on the average, per second, the speed changes by 5 meters/second.

......!!!!!!!!...................................

RESPONSE --> OK I looked at one of the numbers wrong

.................................................

......!!!!!!!!...................................

11:44:40 `q002. Explain in commonsense terms of the significance for an automobile of the rate at which its velocity changes. Do you think that a car with a more powerful engine would be capable of a greater rate of velocity change?

......!!!!!!!!...................................

RESPONSE --> The velocity changes quicker as the car speeds up. Yes

.................................................

......!!!!!!!!...................................

11:44:53 A car whose velocity changes more rapidly will attain a given speed in a shorter time, and will be able to 'pull away from' a car which is capable of only a lesser rate of change in velocity. A more powerful engine, all other factors (e.g., weight and gearing) being equal, would be capable of a greater change in velocity in a given time interval.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

11:45:41 `q003. Explain how we obtain the units meters / second / second in our calculation of the rate of change of the car's speed.

......!!!!!!!!...................................

RESPONSE --> Because meters/second is what the speed is and then seconds is the time it takes the car to reach a certain speed therefore giving you m/s/s

.................................................

......!!!!!!!!...................................

11:45:52 When we divide the change in velocity, expressed in meters/second, by the duration of the time interval in seconds, we get units of (meters / second) / second, often written meters / second / second.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

11:47:09 `q004. The unit (meters / second) / second is actually a complex fraction, having a numerator which is itself a fraction. Such a fraction can be simplified by multiplying the numerator by the reciprocal of the denominator. We thus get (meters / second) * (1/ second). What do we get when we multiply these two fractions?

......!!!!!!!!...................................

RESPONSE --> meters

.................................................

......!!!!!!!!...................................

11:49:17 `q004. If the velocity of an object changes from 10 m/s to -5 m/s during a time interval of 5 seconds, then at what average rate is the velocity changing?

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problem 3 m/s

.................................................

......!!!!!!!!...................................

11:49:35 We see that the velocity changes from 10 meters/second to -5 meters/second, a change of -15 meters / second, during a five-second time interval. A change of -15 m/s during a 5 s time interval implies an average rate of -15 m/s / (5 s) = -3 (m/s)/ s = -3 m/s^2. This is the same as (-3 m/s) / s, as we saw above. So the velocity is changing by -3 m/s every second.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

11:50:45 `q005. You should have noted that velocity can be positive or negative, as can the change in velocity or the rate at which velocity changes. The average rate at which a quantity changes with respect to time over a given time interval is equal to the change in the quantity divided by the duration of the time interval. In this case we are calculating the average rate at which the velocity changes. If v represents velocity then we we use `dv to represent the change in velocity and `dt to represent the duration of the time interval. What expression do we therefore use to express the average rate at which the velocity changes?

......!!!!!!!!...................................

RESPONSE --> dv/dt

.................................................

......!!!!!!!!...................................

11:51:47 The average rate would be expressed by [ave rate of velocity change with respect to clock time] = `dv / `dt. The expression [ave rate of velocity change with respect to clock time] is pretty cumbersome so we give it a name. The name we give it is 'average acceleration', abbreviated by the letter aAve. Using a to represent acceleration, write down the definition of average acceleration. The definition of average acceleration is aAve = `dv / `dt. Please make any comments you feel appropriate about your understanding of the process so far.

......!!!!!!!!...................................

RESPONSE --> OK, yes i understand this process

.................................................

......!!!!!!!!...................................

11:52:53 `q006. If a runner is moving at 6 meters / sec at clock time t = 1.5 sec after starting a race, and at 9 meters / sec at clock time t = 3.5 sec after starting, then what is the average acceleration of the runner between these two clock times?

......!!!!!!!!...................................

RESPONSE --> 1.5 m/s

.................................................

......!!!!!!!!...................................

11:53:32 `q006a. What is the change `dv in the velocity of the runner during the time interval, and what is the change `dt in clock time during this interval?

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. 3 meters 2 seconds

.................................................

......!!!!!!!!...................................

11:53:51 `q006b. What therefore is the average rate at which the velocity is changing during this time interval?

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. 1.5 m/s

.................................................

......!!!!!!!!...................................

11:54:16 We see that the runner's velocity changes from 6 meters/second to 9 meters/second, a change of `dv = 9 m/s - 6 m/s = 3 m/s, during a time interval their runs from t = 1.5 sec to t = 3.5 sec so that the duration of the interval is `dt = 3.5 s - 1.5 s = 2.0 s. The rate at which the velocity changes is therefore 3 m/s / (2.0 s) = 1.5 m/s^2. Please comment if you wish on your understanding of the problem at this point.

......!!!!!!!!...................................

RESPONSE --> I understand this process

.................................................

......!!!!!!!!...................................

11:56:17 `q007. On a graph of velocity vs. clock time, we can represent the two events of this problem by two points on the graph. The first point will be (1.5 sec, 6 meters/second) and the second point will be (3.5 sec, 9 meters / sec). What is the run between these points and what does it represent? What is the rise between these points what does it represent? What is the slope between these points what does it represent?

......!!!!!!!!...................................

RESPONSE --> run = 2 rise = 3 slope is 3/2

.................................................

......!!!!!!!!...................................

11:56:34 The rise from the first point to the second is from 6 meters/second to 9 meters/second, or 3 m/s. This represents the change `dv in velocity. The run is from 1.5 seconds to 3.5 seconds, or 2 seconds, and represents the change `dt in clock time. The slope, being the rise divided by the run, is 3 m/s / (2 sec) = 1.5 m/s^2. This slope represents `dv / `dt, which is the average acceleration during the time interval. You may if you wish comment on your understanding to this point.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

11:57:22 `q008. In what sense does the slope of any graph of velocity vs. clock time represent the acceleration of the object? For example, why does a greater slope imply greater acceleration?

......!!!!!!!!...................................

RESPONSE --> A greater slope would imply a greater acceleration because you would be getting faster

.................................................

......!!!!!!!!...................................

11:57:38 Since the rise between two points on a graph of velocity vs. clock time represents the change in `dv velocity, and since the run represents the change `dt clock time, the slope represents rise / run, or change in velocity /change in clock time, or `dv / `dt. This is the definition of average acceleration.

......!!!!!!!!...................................

RESPONSE --> oh ok

.................................................

......!!!!!!!!...................................

11:58:22 `q009. This is the same situation as in the preceding problem: An automobile coasts down a hill with a constant slope. At first its velocity increases at a very nearly constant rate. After it attains a certain velocity, air resistance becomes significant and the rate at which velocity changes decreases, though the velocity continues to increase. Describe a graph of velocity vs. clock time for this automobile (e.g., neither increasing nor decreasing; increasing at an increasing rate, a constant rate, a decreasing rate; decreasing at an increasing, constant or decreasing rate; the description could be different for different parts of the graph).

......!!!!!!!!...................................

RESPONSE --> increasing at a constant rate

.................................................

......!!!!!!!!...................................

11:58:34 Your graph should have velocity as the vertical axis and clock time as the horizontal axis. The graph should be increasing since the velocity starts at zero and increases. At first the graph should be increasing at a constant rate, because the velocity is increasing at a constant rate. The graph should continue increasing by after a time it should begin increasing at a decreasing rate, since the rate at which the velocity changes begins decreasing due to air resistance. However the graph should never decrease, although as air resistance gets greater and greater the graph might come closer and closer to leveling off. Critique your solution by describing or insights you had or insights you had and by explaining how you now know how to avoid those errors.

......!!!!!!!!...................................

RESPONSE --> Ok

.................................................

......!!!!!!!!...................................

12:10:49 `q010. An automobile coasts down a hill with a constant slope. At first its velocity increases at a very nearly constant rate. After it attains a certain velocity, air resistance becomes significant and the rate at which velocity changes decreases, though the velocity continues to increase. Describe a graph of acceleration vs. clock time for this automobile (e.g., neither increasing nor decreasing; increasing at an increasing rate, a constant rate, a decreasing rate; decreasing at an increasing, constant or decreasing rate; the description could be different for different parts of the graph).

......!!!!!!!!...................................

RESPONSE --> decreasing at a constant rate

.................................................

......!!!!!!!!...................................

12:11:41 Your graph should have acceleration as the vertical axis and clock time as the horizontal axis. At first the graph should be neither increasing nor decreasing, since it first the acceleration is constant. Then after a time the graph should begin decreasing, which indicates the decreasing rate at which velocity changes as air resistance begins having an effect. An accurate description of whether the graph decreases at a constant, increasing or decreasing rate is not required at this point, because the reasoning is somewhat complex and requires knowledge you are not expected to possess at this point. However it is noted that the graph will at first decrease more and more rapidly, and then less and less rapidly as it approaches the t axis. In answer to the following question posed at this point by a student: Can you clarify some more the differences in acceleration and velocity? ** Velocity is the rate at which position changes and the standard units are cm/sec or m/sec. Acceleration is the rate at which velocity changes and its standard units are cm/s^2 or m/s^2. Velocity is the slope of a position vs. clock time graph. Acceleration is the slope of a velocity vs. clock time graph. **

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

rɬyǸ[ Student Name: assignment #005

.................................................

......!!!!!!!!...................................

14:04:39 `q001. Note that there are 9 questions in this assignment. If the acceleration of an object is uniform, then the following statements apply: 1. A graph of velocity vs. clock time forms a straight line, either level or increasing at a constant rate or decreasing at a constant rate. 2. The average velocity of the object over any time interval is equal to the average of its velocity at the beginning of the time interval (called its initial velocity) and its velocity at the end of the time interval (called its final velocity). 3. The velocity of the object changes at a constant rate (this third statement being obvious since the rate at which the velocity changes is the acceleration, which is assumed here to be constant). 4. The acceleration of the object at every instant is equal to the average acceleration of the object. Suppose that an object increases its velocity at a uniform rate, from an initial velocity of 5 m/s to a final velocity of 25 m/s during a time interval of 4 seconds. By how much does the velocity of the object change? What is the average acceleration of the object? What is the average velocity of the object?

......!!!!!!!!...................................

RESPONSE --> the velocty of the object changes by 20 m/s aAve is 5 m/s/s vAve is 12.5 m/s/s

.................................................

......!!!!!!!!...................................

14:05:09 The velocity of the object changes from 5 meters/second to 25 meters/second so the change in velocity is 20 meters/second. The average acceleration is therefore (20 meters/second) / (4 seconds) = 5 m / s^2. The average velocity of the object is the average of its initial and final velocities, as asserted above, and is therefore equal to (5 meters/second + 25 meters/second) / 2 = 15 meters/second (note that two numbers are averaged by adding them and dividing by 2).

......!!!!!!!!...................................

RESPONSE --> OK

.................................................

......!!!!!!!!...................................

14:05:23 `q002. How far does the object of the preceding problem travel in the 4 seconds?

......!!!!!!!!...................................

RESPONSE --> 20 m

.................................................

......!!!!!!!!...................................

14:05:32 The displacement `ds of the object is the product vAve `dt of its average velocity and the time interval, so this object travels 15 m/s * 4 s = 60 meters during the 4-second time interval.

......!!!!!!!!...................................

RESPONSE --> Oh ok

.................................................

......!!!!!!!!...................................

14:06:20 `q003. Explain in commonsense terms how we determine the acceleration and distance traveled if we know the initial velocity v0, and final velocity vf and the time interval `dt.

......!!!!!!!!...................................

RESPONSE --> for acceleration you divide velocity by time

.................................................

......!!!!!!!!...................................

14:06:27 In commonsense terms, we find the change in velocity since we know the initial and final velocities, and we know the time interval, so we can easily calculate the acceleration. Again since we know initial and final velocities we can easily calculate the average velocity, and since we know the time interval we can now determine the distance traveled.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

14:07:04 `q004. Symbolize the situation by first giving the expression for the acceleration in terms of v0, vf and `dt, then by giving the expression for vAve in terms of v0 and vf, and finally by giving the expression for the displacement in terms of v0, vf and `dt.

......!!!!!!!!...................................

RESPONSE --> I have no idea what this is asking

.................................................

......!!!!!!!!...................................

14:07:31 The acceleration is equal to the change in velocity divided by the time interval; since the change in velocity is vf - v0 we see that the acceleration is a = ( vf - v0 ) / `dt.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

14:08:02 `q005. The average velocity is the average of the initial and final velocities, which is expressed as (vf + v0) / 2.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

14:08:10 When this average velocity is multiplied by `dt we get the displacement, which is `ds = (v0 + vf) / 2 * `dt.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

14:09:31 `q006. This situation is identical to the previous, and the conditions implied by uniformly accelerated motion are repeated here for your review: If the acceleration of an object is uniform, then the following statements apply: 1. A graph of velocity vs. clock time forms a straight line, either level or increasing at a constant rate or decreasing at a constant rate. 2. The average velocity of the object over any time interval is equal to the average of its velocity at the beginning of the time interval (called its initial velocity) and its velocity at the end of the time interval (called its final velocity). 3. The velocity of the object changes at a constant rate (this third statement being obvious since the rate at which the velocity changes is the acceleration, which is assumed here to be constant). 4. The acceleration of the object at every instant is equal to the average acceleration of the object. Describe a graph of velocity vs. clock time, assuming that the initial velocity occurs at clock time t = 0. At what clock time is the final velocity then attained? What are the coordinates of the point on the graph corresponding to the initial velocity (hint: the t coordinate is 0, as specified here; what is the v coordinate at this clock time? i.e., what is the velocity when t = 0?). What are the coordinates of the point corresponding to the final velocity?

......!!!!!!!!...................................

RESPONSE --> The graph would be nothing because the initial velocity occurs at 0 clock time

.................................................

......!!!!!!!!...................................

14:10:10 The initial velocity of 5 m/s occurs at t = 0 s so the corresponding graph point is (0 s, 5 m/s). The final velocity of 25 meters/second occurs after a time interval of `dt = 4 seconds; since the time interval began at t = 0 sec it ends at at t = 4 seconds and the corresponding graph point is ( 4 s, 25 m/s).

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. Oh ok, i didn't know we were suppose to use the numbers from the previous problem

.................................................

......!!!!!!!!...................................

14:11:57 `q007. Is the graph increasing, decreasing or level between the two points, and if increasing or decreasing is the increase or decrease at a constant, increasing or decreasing rate?

......!!!!!!!!...................................

RESPONSE --> increasing, increasing at a constant rate

.................................................

......!!!!!!!!...................................

14:12:05 Since the acceleration is uniform, the graph is a straight line. The graph therefore increases at a constant rate from the point (0, 5 m/s) to the point (4 s, 25 m/s).

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

14:13:03 `q008. What is the slope of the graph between the two given points, and what is the meaning of this slope?

......!!!!!!!!...................................

RESPONSE --> 25/4, it is increasing

.................................................

......!!!!!!!!...................................

14:13:13 The rise of the graph is from 5 m/s to 25 m/s and is therefore 20 meters/second, which represents the change in the velocity of the object. The run of the graph is from 0 seconds to 4 seconds, and is therefore 4 seconds, which represents the time interval during which the velocity changes. The slope of the graph is rise / run = ( 20 m/s ) / (4 s) = 5 m/s^2, which represents the change `dv in the velocity divided by the change `dt in the clock time and therefore represents the acceleration of the object.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

14:13:43 `q009. The graph forms a trapezoid, starting from the point (0,0), rising to the point (0,5 m/s), then sloping upward to (4 s, 25 m/s), then descending to the point (4 s, 0) and returning to the origin (0,0). This trapezoid has two altitudes, 5 m/s on the left and 25 m/s on the right, and a base which represents a width of 4 seconds. What is the average altitude of the trapezoid and what does it represent, and what is the area of the trapezoid and what does it represent?

......!!!!!!!!...................................

RESPONSE --> I dont know how to find the altitude

.................................................

......!!!!!!!!...................................

14:13:59 02-05-2006 14:13:59 The two altitudes are 5 meters/second and 25 meters/second, and their average is 15 meters/second. This represents the average velocity of the object on the time interval. The area of the trapezoid is equal to the product of the average altitude and the base, which is 15 m/s * 4 s = 60 meters. This represents the product of the average velocity and the time interval, which is the displacement during the time interval.

......!!!!!!!!...................................

NOTES -------> The two altitudes are 5 meters/second and 25 meters/second, and their average is 15 meters/second. This represents the average velocity of the object on the time interval. The area of the trapezoid is equal to the product of the average altitude and the base, which is 15 m/s * 4 s = 60 meters. This represents the product of the average velocity and the time interval, which is the displacement during the time interval.

................................................."

On several of these problems you have indicated the process of your thinking, but on some you have not. On many of these, it is clear what you were thinking from your answers. You appear to be getting the overall ideas, but I can't tell for sure about details.

For example you gave several answers lacking units, and others with incorrect units; on others you did have the right units and appear to understand the idea of units. But though all given solutions included units, you did not self-critique any of the unit errors in your answers.

I continue to recommend more detail and more self-critique, and close attention to units and definitions.