#$&* course MTH-279 06/15 around 8:30PM. Question: 1. Solve the following equations with the given initial conditions:1. y ' - 2 y = 0, y(1) - 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. t^2 y ' - 9 y = 0, y(1) = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t^ 2 y’ - 9y = 0 t^ 2 dy/dt = 9y dy/y = 9 dt/t^2 int(dy/y) = 9 * int(dt/t^2) ln(y) = -9/t+c y(t) = e ^ (c - 9/t) y(t) = c/e ^ (9/t) y(1) = 2 y(1) = c/e ^ (9/1) = 2 C = 2 e ^ 9 y(t) = 2e^9 / e^(9/t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. (t^2 + t) y' + (2t + 1) y = 0, y(0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (t^2 + t) y' + (2t + 1) y = 0 dy/dt = -(2t + 1) y /(t^2 + t) dy/y = -(2t + 1)/(t^2 + t) dt int (dy/y) = -int((2t + 1)/(t^2 + t) dt) ln(y) = -ln(t^2 + t) + c y(t) = c/(t^2 + t) y(0) = 1 y(0) = c/(0^2 + 0) = c/0 = 1 cannot divide by zero, so c is undefined by this condition. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. y ' + sin(3 t) y = 0, y(0) = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' + sin(3 t) y = 0 dy/dt + sin(3 t) y = 0 dy/dt = -sin(3 t) dt int (dy/dt) = - int (sin(3 t) dt) ln(y) = cos(3t) /3 + c y(t) = e^(cos(3t) /3 + c) y(t) = c * e^(cos(3t) /3) y(0) = 2 y(0) = c * e^(cos(3* 0) /3) = 2 y(0) = c * e^(1/3) = 2 c = 2/e^(1/3) y(t) = 2/e^(1/3) * e^(cos(3t) /3) y(t) = 2e^(cos(3t) /3) /e^(1/3) Confidence rating: 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 5. Match each equation with one of the direction fields shown below, and explain why you chose as you did. y ' - t^2 y = 0 **** E, because it contains the direction field where the slope changes to zero and then back to what it originated as #$&* y ' - y = 0 **** A, because it contains the direction field where the slope stays the same across the t axis given no influence from a t in the equation #$&* y' - y / t = 0 **** C, since y' = y / t, the slopes will be getting smaller and smaller due to t growing faster than y #$&* y ' - t y = 0 **** B, when finding the slope, y' = t y, in the first quadrant the slopes will be positive and the fourth quadrant negative #$&* y ' + t y = 0 **** F, y' = -t y, in the first quadrant the slopes will be negative and the fourth quadrant negative #$&* A B C D E F 6. The graph of y ' + b y = 0 passes through the points (1, 2) and (3, 8). What is the value of b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Use the rise / run method to find the slope? (8-2) / (3-1) = 3 = y' -- plug this into the original 3 = -b y -- using (3,8) to solve for b 3 = -b (8) b = - 3 / 8
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 7. The equation y ' - y = 2 is first-order linear, but is not homogeneous. If we let w(t) = y(t) + 2, then: What is w ' ? **** w(t) = y(t) + 2 w'(t) = (y(t) + 2)' = y'(t) + (2)' = y'(t) #$&* What is y(t) in terms of w(t)? **** y(t) = w(t) - 2 #$&* What therefore is the equation y ' - y = 2, written in terms of the function w and its derivative w ' ? **** y ' - y = 2 w'(t) - (w(t) - 2) = 2 w'(t) - w(t) + 2 = 2 w'(t) - w(t) = 0 #$&* Now solve the equation and check your solution: Solve this new equation in terms of w. **** w(t) = c*e^t #$&* Substitute y + 2 for w and get the solution in terms of y. **** w(t) = c*e^t y + 2 = c*e^t y = c*e^t -2 #$&* Check to be sure this function is indeed a solution to the equation. **** y ' - y = 2 c*e^t - (c*e^t -2) = 2 c*e^t - c*e^t + 2 = 2 2 = 2 #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Below each respective question confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 8. The graph below is a solution of the equation y ' - b y = 0 with initial condition y(0) = y_0. What are the values of y_0 and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(t) = c * e^(-bt) y_0 = 1 -> y intercept. y(0) = c * e^(-b*0) = 1 c = 1 y(1) = c * e^(-b*1) = 2 y(1) = e^(-b) = 2 b = -ln(2) Confidence rating: 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 7. The equation y ' - y = 2 is first-order linear, but is not homogeneous. If we let w(t) = y(t) + 2, then: What is w ' ? **** w(t) = y(t) + 2 w'(t) = (y(t) + 2)' = y'(t) + (2)' = y'(t) #$&* What is y(t) in terms of w(t)? **** y(t) = w(t) - 2 #$&* What therefore is the equation y ' - y = 2, written in terms of the function w and its derivative w ' ? **** y ' - y = 2 w'(t) - (w(t) - 2) = 2 w'(t) - w(t) + 2 = 2 w'(t) - w(t) = 0 #$&* Now solve the equation and check your solution: Solve this new equation in terms of w. **** w(t) = c*e^t #$&* Substitute y + 2 for w and get the solution in terms of y. **** w(t) = c*e^t y + 2 = c*e^t y = c*e^t -2 #$&* Check to be sure this function is indeed a solution to the equation. **** y ' - y = 2 c*e^t - (c*e^t -2) = 2 c*e^t - c*e^t + 2 = 2 2 = 2 #$&* YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Below each respective question confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 8. The graph below is a solution of the equation y ' - b y = 0 with initial condition y(0) = y_0. What are the values of y_0 and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y(t) = c * e^(-bt) y_0 = 1 -> y intercept. y(0) = c * e^(-b*0) = 1 c = 1 y(1) = c * e^(-b*1) = 2 y(1) = e^(-b) = 2 b = -ln(2) Confidence rating: 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!