#$&* course MTH-279 06/21 around 5:48AM. I had a bit if difficulty on this assignment. Some light-shedding would be much appreciated. Thanks in advance. 2.5.1. A 3% saline solution flows at a constant rate into a 1000-gallon tank initially full of a 5% saline solution. The solutions remain well-mixed and the flow of mixed solution out of the tank remains equal to the flow into the tank. What constant rate of flow is necessary to dilute the solution in the tank to 3.5% in 8 hours?
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. Solve the preceding question if the tank contains 500 gallons of 5% solution, and the goal is to achieve 1000 gallons of 3.5% solution at the end of 8 hours. Assume that no solution is removed from the tank until it is full, and that once the tank is full, the resulting overflow is well-mixed. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ????Not sure how to get this one started????
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. Under the conditions of the preceding question, at what rate must 3% solution be pumped into the tank, and at what rate must the mixed solution be pumped from the tank, in order to achieve 1000 gallons of 3.5% solution at the end of 8 hours, with no overflow? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Not sure since I can’t complete the prior solution.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. In the situation of Problem #1, suppose that solution from the first tank is pumped at a constant rate into the second, with overflow being removed, and that the process continues indefinitely. Will the concentration in the second tank approach a limiting value as time goes on? If so what is the limitng value? Justify your answer. **** The concentration in the second would approach the solution of that being pumped in, and I assume the 3% solution would be the limiting value? #$&* Now suppose that the flow from the first tank changes hour by hour, alternately remaining at a set constant rate for one hour, and dropping to half this rate for the next hour before returning to the original rate to begin the two-hour cycle all over again. Will the concentration in the second tank approach a limiting value as time goes on? If so what is the limiting value? Justify your answer. **** Regardless of the rate, the first solution of 3% should still be the limiting factor, as it is the baseline/bottomline solution. The rate at which this occurs is different from the prior situation. #$&* Answer the same questions, assuming that the rate of flow into (and out of) the tank is 10 gallons / hour * ( 3 - cos(t) ), where t is clock time in hours. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. When heated to a temperature of 190 Fahrenheit a tub of soup, placed in a room at constant temperature 80 Fahrenheit, is observed to cool at an initial rate of 0.5 Fahrenheit / minute. If at the instant the tub is taken from the oven the room temperature begins to fall at a constant rate of 0.25 Fahrenheit / minute, what temperature function T(t) governs its temperature? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T '(t) = k(T_room - T(t)) T '(t) = k(80 - T(t)) integrate T(t) = 80 + Ce^(-kt) T(o) = 190 190 = 80 + C C = 110 T(t) = 80 + 110e^(-kt)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. When heated to a temperature of 190 Fahrenheit a tub of soup, placed in a room at constant temperature 80 Fahrenheit, is observed to cool at an initial rate of 0.5 Fahrenheit / minute. If at the instant the tub is taken from the oven the room temperature begins to fall at a constant rate of 0.25 Fahrenheit / minute, what temperature function T(t) governs its temperature? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T '(t) = k(T_room - T(t)) T '(t) = k(80 - T(t)) integrate T(t) = 80 + Ce^(-kt) T(o) = 190 190 = 80 + C C = 110 T(t) = 80 + 110e^(-kt)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!