#$&* course MTH-279 06/21 around 5:54AM. Query 05 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a)3y^2 y'+2t=1 y(-1)=-1 n(y)*y'+m(t)=0 3y^2 y'+2t=1 3y^2 y'+2t-1=0 n(y)=3y^2 and m(t)=2t-1 now by taking anti derivative integral sign(3y^2 dy/dt+2t-1)dt=integral sign 0dt integral sign 3y^2 dy+integral sign 2t-integral sign 1dt=C 3 y^3/3+2 t^2/2-t=C y^3+t^2-t=C y^3+t^2-t=C by applying intial conditions:y(-1)=-1 and solving for C (-1)^3+(-1)^2-(-1)=C -1+1+1=C 1=C implicit soln:y^3+t^2-t=1 now I can use it to find the expl. soln y^3+t^2-t=1 y^3=1+t-t^2 y=3 radical symbol 1+t-t^2 b)interval of existence:-infinity
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: first we find the intial value by pluging in t_0=2 y^3+2^2+siny=4 y^3+4+siny=4 y^3+siny=0 y^3=-siny M(y)+N(t)=C d/dt M(y)+d/dt N(t)=0 M(y)=y^3+sin(y) and N(t)=t^2 now we can calculate the differential eqn d/dt(y^3+sin(y))+d/dt(t^2)=0 3y^2 y'+cos(y)y'+2t=0 (3y^2+cosy)y'+2t=0 ivp that satisfies intial conditions (3y^2+cosy)y'+2t=0,y(2)=0 Confidence rating: 2
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.2.24. Solve the equation y ' = (y^2 + 2 y + 1) sin(t) fand determine the t interval over which he solution exists. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = (y^2 + 2 y + 1) sin(t) int(dy/(y^2 + 2 y + 1)) = int (sin(t))dt int(y+1)^-2 dy = -cos(t) + c -1/(y+1) = -cos(t) + c -1 = (-cos(t))(y + 1) y + 1 = -1/(-cos(t)) y = 1/(cos(t) + c) - 1 The Solution may exist everywhere but where: cos(t) + c = 0 Confidence rating: 2
.............................................
Given Solution: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 an dy ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = - y^2 As y increases, y ' is a negative slope that increases by the square of y, making it graph C. y ' = y^3 As y increases, y' is the cube root of y, so its slope is positive, making it graph A. y ' = y ( 4 - y) As y increases, y' is the more complex equation above, but it’s good to note that by plugging in 0 or 4 for ‘y’ we get a slope of zero. This matches our last graph which is B.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!