#$&* course MTH-279 06/21 around 5:56AM. Query 06 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 + t = 0 Since in the form Mdt + Ndy = 0 M = 6 y + 9/2 t^2 y^2 + t N = (6 t + 3 t^3 ) dM/dy = 9yt^2 + 6 dN/dt = 9t^2 + 6 These are not equivalent either, so the equation is not exact. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) (t cos(t y) + 2 y e^y^2)y ' = ( y cos(t y) + 1) (t cos(t y) + 2 y e^y^2)y ' - ( y cos(t y) + 1) = 0 M = - ( y cos(t y) + 1) = -y cos(t y) - 1 N = (t cos(t y) + 2 y e^y^2) dM/dy = tysin(ty)-cos(ty) dN/dt = cos(ty) - tysin(ty) These are close but not equivalent either. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: N(y, t) * y ' + t^2 + y^2 sin(t) = 0 M = t^2 + y^2 sin(t) N = ? dM/dy = 2y sin(t) Int(2y sin(t)) dt = -2ycos(t) N = -2ycos(t) Confidence rating: 2
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = -t - sqrt( 4 - t^2 ) Solution: (y + a t) y ' + (a y + b t) = 0 First we can solve the condition y(0) = y_0 y(0) = -0 - sqrt( 4 - 0^2 ) = -sqrt(4) = -2 C = -2 d/dt (y + t + sqrt( 4 - t^2 )) d/dt (( 4 - t^2 )^(1/2) + y + t) (1/2)(-2t)(4-t^2)^(-1/2) + 1 (-t)(4-t^2)^(-1/2) + 1 d/dy (y + t + sqrt( 4 - t^2 )) = 1 M = 1 - t(4-t^2)^(-1/2) + g(y) = 1 - t(4-t^2)^(-1/2) - 2 = - t(4-t^2)^(-1/2) -1 N = 1 + h(t) h(t) = - t(4-t^2)^(-1/2) -1 (y + a t) y ' + (a y + b t) = 0 1 = (y + a t) a = (1-y)/t (a y + b t) = - t(4-t^2)^(-1/2) -1 ((1-y)/t)y + bt = - t(4-t^2)^(-1/2) -1 bt = ((y-1)/t)y - t(4-t^2)^(-1/2) -1 b = ((y-1)/t^2)y - (4-t^2)^(-1/2) -1/t Checking this solution: Solution: (y + a t) y ' + (a y + b t) = 0 (y + ((1-y)/t)t)y' + (((1-y)/t)y + (((y-1)/t^2)y - (4-t^2)^(-1/2) -1/t)t = 0 (y + (1-y))y' + (((1-y)/t)y + (((y-1)/t)y - t(4-t^2)^(-1/2) -1) = 0 (1)y' - t(4-t^2)^(-1/2) -1 = 0 M = - t(4-t^2)^(-1/2) -1 N = 1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
#$&* course MTH-279 06/21 around 5:56AM. Query 06 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 + t = 0 Since in the form Mdt + Ndy = 0 M = 6 y + 9/2 t^2 y^2 + t N = (6 t + 3 t^3 ) dM/dy = 9yt^2 + 6 dN/dt = 9t^2 + 6 These are not equivalent either, so the equation is not exact. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) (t cos(t y) + 2 y e^y^2)y ' = ( y cos(t y) + 1) (t cos(t y) + 2 y e^y^2)y ' - ( y cos(t y) + 1) = 0 M = - ( y cos(t y) + 1) = -y cos(t y) - 1 N = (t cos(t y) + 2 y e^y^2) dM/dy = tysin(ty)-cos(ty) dN/dt = cos(ty) - tysin(ty) These are close but not equivalent either.
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: N(y, t) * y ' + t^2 + y^2 sin(t) = 0 M = t^2 + y^2 sin(t) N = ? dM/dy = 2y sin(t) Int(2y sin(t)) dt = -2ycos(t) N = -2ycos(t)
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = -t - sqrt( 4 - t^2 ) Solution: (y + a t) y ' + (a y + b t) = 0 First we can solve the condition y(0) = y_0 y(0) = -0 - sqrt( 4 - 0^2 ) = -sqrt(4) = -2 C = -2 d/dt (y + t + sqrt( 4 - t^2 )) d/dt (( 4 - t^2 )^(1/2) + y + t) (1/2)(-2t)(4-t^2)^(-1/2) + 1 (-t)(4-t^2)^(-1/2) + 1 d/dy (y + t + sqrt( 4 - t^2 )) = 1 M = 1 - t(4-t^2)^(-1/2) + g(y) = 1 - t(4-t^2)^(-1/2) - 2 = - t(4-t^2)^(-1/2) -1 N = 1 + h(t) h(t) = - t(4-t^2)^(-1/2) -1 (y + a t) y ' + (a y + b t) = 0 1 = (y + a t) a = (1-y)/t (a y + b t) = - t(4-t^2)^(-1/2) -1 ((1-y)/t)y + bt = - t(4-t^2)^(-1/2) -1 bt = ((y-1)/t)y - t(4-t^2)^(-1/2) -1 b = ((y-1)/t^2)y - (4-t^2)^(-1/2) -1/t
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!
#$&* course MTH-279 06/21 around 5:56AM. Query 06 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 + t = 0 Since in the form Mdt + Ndy = 0 M = 6 y + 9/2 t^2 y^2 + t N = (6 t + 3 t^3 ) dM/dy = 9yt^2 + 6 dN/dt = 9t^2 + 6 These are not equivalent either, so the equation is not exact. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) (t cos(t y) + 2 y e^y^2)y ' = ( y cos(t y) + 1) (t cos(t y) + 2 y e^y^2)y ' - ( y cos(t y) + 1) = 0 M = - ( y cos(t y) + 1) = -y cos(t y) - 1 N = (t cos(t y) + 2 y e^y^2) dM/dy = tysin(ty)-cos(ty) dN/dt = cos(ty) - tysin(ty) These are close but not equivalent either.
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: N(y, t) * y ' + t^2 + y^2 sin(t) = 0 M = t^2 + y^2 sin(t) N = ? dM/dy = 2y sin(t) Int(2y sin(t)) dt = -2ycos(t) N = -2ycos(t)
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = -t - sqrt( 4 - t^2 ) Solution: (y + a t) y ' + (a y + b t) = 0 First we can solve the condition y(0) = y_0 y(0) = -0 - sqrt( 4 - 0^2 ) = -sqrt(4) = -2 C = -2 d/dt (y + t + sqrt( 4 - t^2 )) d/dt (( 4 - t^2 )^(1/2) + y + t) (1/2)(-2t)(4-t^2)^(-1/2) + 1 (-t)(4-t^2)^(-1/2) + 1 d/dy (y + t + sqrt( 4 - t^2 )) = 1 M = 1 - t(4-t^2)^(-1/2) + g(y) = 1 - t(4-t^2)^(-1/2) - 2 = - t(4-t^2)^(-1/2) -1 N = 1 + h(t) h(t) = - t(4-t^2)^(-1/2) -1 (y + a t) y ' + (a y + b t) = 0 1 = (y + a t) a = (1-y)/t (a y + b t) = - t(4-t^2)^(-1/2) -1 ((1-y)/t)y + bt = - t(4-t^2)^(-1/2) -1 bt = ((y-1)/t)y - t(4-t^2)^(-1/2) -1 b = ((y-1)/t^2)y - (4-t^2)^(-1/2) -1/t
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!
#$&* course MTH-279 06/21 around 5:56AM. Query 06 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: If the equation is exact, solve the equation (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 = -t, with y(2) = 1. * YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (6 t + 3 t^3 ) y ' + 6 y + 9/2 t^2 y^2 + t = 0 Since in the form Mdt + Ndy = 0 M = 6 y + 9/2 t^2 y^2 + t N = (6 t + 3 t^3 ) dM/dy = 9yt^2 + 6 dN/dt = 9t^2 + 6 These are not equivalent either, so the equation is not exact. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.6. If the equation is exact, solve the equation y ' = - ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) with y(0) = pi. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y ' = ( y cos(t y) + 1) / (t cos(t y) + 2 y e^y^2) (t cos(t y) + 2 y e^y^2)y ' = ( y cos(t y) + 1) (t cos(t y) + 2 y e^y^2)y ' - ( y cos(t y) + 1) = 0 M = - ( y cos(t y) + 1) = -y cos(t y) - 1 N = (t cos(t y) + 2 y e^y^2) dM/dy = tysin(ty)-cos(ty) dN/dt = cos(ty) - tysin(ty) These are close but not equivalent either.
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.10. If N(y, t) * y ' + t^2 + y^2 sin(t) = 0 is exact, what is the most general possible form of N(y, t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: N(y, t) * y ' + t^2 + y^2 sin(t) = 0 M = t^2 + y^2 sin(t) N = ? dM/dy = 2y sin(t) Int(2y sin(t)) dt = -2ycos(t) N = -2ycos(t)
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.3.12. If y = -t - sqrt( 4 - t^2 ) is the solution of the differential equation (y + a t) y ' + (a y + b t) = 0 with initial condition y(0) = y_0, what are the values of a, b and y_0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = -t - sqrt( 4 - t^2 ) Solution: (y + a t) y ' + (a y + b t) = 0 First we can solve the condition y(0) = y_0 y(0) = -0 - sqrt( 4 - 0^2 ) = -sqrt(4) = -2 C = -2 d/dt (y + t + sqrt( 4 - t^2 )) d/dt (( 4 - t^2 )^(1/2) + y + t) (1/2)(-2t)(4-t^2)^(-1/2) + 1 (-t)(4-t^2)^(-1/2) + 1 d/dy (y + t + sqrt( 4 - t^2 )) = 1 M = 1 - t(4-t^2)^(-1/2) + g(y) = 1 - t(4-t^2)^(-1/2) - 2 = - t(4-t^2)^(-1/2) -1 N = 1 + h(t) h(t) = - t(4-t^2)^(-1/2) -1 (y + a t) y ' + (a y + b t) = 0 1 = (y + a t) a = (1-y)/t (a y + b t) = - t(4-t^2)^(-1/2) -1 ((1-y)/t)y + bt = - t(4-t^2)^(-1/2) -1 bt = ((y-1)/t)y - t(4-t^2)^(-1/2) -1 b = ((y-1)/t^2)y - (4-t^2)^(-1/2) -1/t
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!#*&!