#$&* course MTH-279 06/22 around 8:15PM. `q001. Find the first and second derivatives of the following functions:•3 sin(4 t + 2)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: `q002. Sketch a graph of the function y = 3 sin(4 t + 2). Don't use a graphing calculator, use what you know about graphing. Make your best attempt, and describe both your thinking and your graph. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph is sinusoidal, but is shifted to the right as a result of the +2 in the parenthesis. The amplitude is 3 because of the 3 at the beginning of the equation. Because ‘t’ is multiplied by 4, the period is 4 times shorter than a normal sin function.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: `q003. Describe, in terms of A, omega and theta_0, the characteristics of the graph of y = A cos(omega * t + theta_0) + k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph will be shifted in the y direction by the value k. The amplitude will be realized as A. The graph will be shifted in the x direction by theta_0. Omega will stretch or shrink the graph in the x direction.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: `q004. Find the indefinite integral of each of the following: • f(t) = e^(-3 t) • x(t) = 2 sin( 4 pi t + pi/4) • y(t) = 1 / (3 x + 2) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: F(t)=-1/3e^(-3t)+C X(t)=-1/(2pi)cos(4pi*t+pi/4)+C Y(t)=1/3ln(3x+2)+C --- x(t) = 2 sin( 4 pi t + pi/4) Integration of (2 sin( 4 pi t + pi/4) dt) = 2 (Integration of (sin( 4 pi t + pi/4) dt) -> factor out constants = (1/2)(Integration of (sin(u)du)) -> substitute u=( 4 pi t + pi/4), du=(4 pi )dt = (-cos(u))/(2 pi) + constant -> integration of sin(u) = -cos(u) = (-cos( 4 pi t + pi/4))/(2 pi) + constant -> substitute u with original function --- y(t) = 1 / (3t + 2) Integration of (1 / (3t + 2) dt) = (1/3) Integration of ((1/u) du) -> substitute u=(3t + 2), du= 3 dt = (1/3)(ln(u)/3) + constant -> (1/u) = ln(u) = (1/3)(ln(3t + 2)) + constant -> substitute u with original function confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: `q005. Find an antiderivative of each of the following, subject to the given conditions: • f(t) = e^(-3 t), subject to the condition that when t = 0 the value of the antiderivative is 2. • x(t) = 2 sin( 4 pi t + pi/4), subject to the condition that when t = 1/8 the value of the antiderivative is 2 pi. • y(t) = 1 / (3 t + 2), subject to the condition that the limiting value of the antiderivative, as t approaches infinity, is -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: f(t) = e^(-3 t) = 2 when, t = 0 The antiderivative from question 4 was: = (-1/3)e^(-3t) + constant when t=0 we can find a solution for the constant -(1/3) + constant = 2 -> substitution of values from f(t) = e^(-3 t) = 2, when t = 0 From this the constant must equal (7/3) in order to get an antiderivative of 2. --- x(t) = 2 sin( 4 pi t + pi/4) = 2 pi, when t = (1/8) The antiderivative from question 4 was: (-cos( 4 pi t + pi/4))/(2 pi) + constant When t = (1/8), we can find a solution for the constant 0.113 approximately + constant = 2 pi -> substitution of values from x(t) = 2 sin( 4 pi t + pi/4) = 2 pi, when t = (1/8) From this the constant must equal approximately 6.396 in order to get an antiderivative of 2 pi. --- y(t) = 1 / (3 t + 2) = -1, as t approaches infinity The antiderivative from question 4 was: (1/3)(ln(3t + 2)) + constant It appears that no antiderivatives that meet those qualities exist.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: `q006. Use partial fractions to express (2 t + 4) / ( (t - 3) ( t + 1) ) in the form A / (t - 3) + B / (t + 1). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2t + 4 = A(t+1) + B(t-3), set t=3, solve for A= 5/2 2t + 4 = A(t+1) + B(t-3), set t=-1, solve for B= -1/2 Substitute A and B into equation and integrate: (2t +4)/ (t-3)(t+1) = A / (t - 3) + B / (t + 1), where A= 5/2 and B= -1/2; solve for integration = 5/2ln(t-3) - 1/2ln(t+1) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: `q007. The graph of a function f(x) contains the point (2, 5). So the value of f(2) is 5. At the point (2, 5) the slope of the tangent line to the graph is .5. What is your best estimate, based on only this information, of the value of f(2.4)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The equation of the graph is y= (1/2)x + 4 substitute x=2.4 into equation and solve f(2.4)= 5.2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q008. The graph of a function g(t) contains the points (3, 4), (3.2, 4.4) and (3.4, 4.5). What is your best estimate of the value of g ' (3), where the ' represents the derivative with respect to t? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The slope between the two points (3.2, 4.4) and (3.4, 4.5) is (1/2). The slope between the two points (3, 4), (3.2, 4.4) is 2. Best guess estimate says that the graph is increasing on a decreasing manner. Therefore, the slope when x=3 will be greater than 2. I would guess g'(3)= 5/2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&*