#$&* course MTH-279 06/23 around 5:40AM. This is a re-submission as I sent in Query_07 with Queries 4-5-6, but feedback for Query_07 wasn't received with the set. I had a wee bit of roadblock with this assignment. Question: 3.4.2. Solve the equation y ' = 2 t y ( 1 - y), with y(0) = -1, as a Bernoulli equation.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.4.6. Solve the equation y ' - y = t y^(1/3), y(0) = -9 as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ->Bernoulli equation form: y' + p(t)y = q(t)y^n y ' - y = t y^(1/3) Since the Equation is already in the form: p(t) = -1 q(t) = t n = 1/3 Using v = y^m, which means y = v^(1/m), and m = (1 - n) from the Bernoulli equation. The equation becomes: dv/dt + (1-n)p(t)v = (1 - n)q(t) dv/dt + (1-(1/3))(-1)v = (1 - (1/3))(t) dv/dt + (2/3)(-1)v = (2/3)(t) dv/dt + (- 2/3)v = (2/3)(t) This Equation can now be solved using a previous method. I chose to use u(t) = e^(int(p(t))dt) for the form y' + p(t)y = g(t) For this equation: p(t) = (-2/3) int(p(t)) dt = (-2/3)t = -2t/3 u(t) = e^(-2t/3) v' + (- 2/3)v = (2/3)(t) v' e^(-2t/3) + (- 2/3)ve^(-2t/3) = (2/3)(t)e^(-2t/3) v' e^(-2t/3) - (2/3)ve^(-2t/3) = (2/3)(t)e^(-2t/3) (ve^(-2t/3))' = (2/3)te^(-2t/3) Integration of both sides yeilds: ve^(-2t/3) = Int ((2/3)te^(-2t/3)) dt Integration of the Right hand side required Integration by parts udv = uv - Int(vdu) u = t dv = e^(-2t/3) dt du = dt v = Int(dv) = (-3/2)e^(-2t/3) The Equation becomes: ve^(-2t/3) = (2/3)((-3/2)te^(-2t/3) + (3/2) Int(e^(-2t/3)) dt) ve^(-2t/3) = -te^(-2t/3) + (-3/2)e^(-2t/3) ve^(-2t/3) = -te^(-2t/3) - (3/2)e^(-2t/3) Dividing Out u(t) = e^(-2t/3), the Equation becomes: v = -t - (3/2) + c Remember that y = v^(1/m) = v^(1/(1 - n)) y = v^(1/(1 - 1/3)) = v^(3/2) y = (-t - (3/2) + c)^(3/2) ----------------------------------------------------- Now that we have this Equation lets solve for C with y(0) = -9 y(0) = (-0 - (3/2) + c)^(3/2) (- (3/2) + c)^(3/2) = -9 (- (3/2) + c)^(3) = 81 (- (3/2) + c) = cube root (81) C = cube root (81) + (3/2) = 5.83 approx. Equation becomes: y = (-t - (3/2) + cube root (81) + (3/2))^(3/2) y = (-t + cube root (81))^(3/2) y = (cube root (81) - t)^(3/2) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.4.8. Solve the equation y ' = - (y + 1) + t ( y + 1)^(-2) as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ???I need to use a u substitution, but am not sure how to get this going???? Bernoulli equation form is y' + p(t)y = q(t)y^n confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
#$&* course MTH-279 06/23 around 5:40AM. This is a re-submission as I sent in Query_07 with Queries 4-5-6, but feedback for Query_07 wasn't received with the set. I had a wee bit of roadblock with this assignment. Question: 3.4.2. Solve the equation y ' = 2 t y ( 1 - y), with y(0) = -1, as a Bernoulli equation.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.4.6. Solve the equation y ' - y = t y^(1/3), y(0) = -9 as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ->Bernoulli equation form: y' + p(t)y = q(t)y^n y ' - y = t y^(1/3) Since the Equation is already in the form: p(t) = -1 q(t) = t n = 1/3 Using v = y^m, which means y = v^(1/m), and m = (1 - n) from the Bernoulli equation. The equation becomes: dv/dt + (1-n)p(t)v = (1 - n)q(t) dv/dt + (1-(1/3))(-1)v = (1 - (1/3))(t) dv/dt + (2/3)(-1)v = (2/3)(t) dv/dt + (- 2/3)v = (2/3)(t) This Equation can now be solved using a previous method. I chose to use u(t) = e^(int(p(t))dt) for the form y' + p(t)y = g(t) For this equation: p(t) = (-2/3) int(p(t)) dt = (-2/3)t = -2t/3 u(t) = e^(-2t/3) v' + (- 2/3)v = (2/3)(t) v' e^(-2t/3) + (- 2/3)ve^(-2t/3) = (2/3)(t)e^(-2t/3) v' e^(-2t/3) - (2/3)ve^(-2t/3) = (2/3)(t)e^(-2t/3) (ve^(-2t/3))' = (2/3)te^(-2t/3) Integration of both sides yeilds: ve^(-2t/3) = Int ((2/3)te^(-2t/3)) dt Integration of the Right hand side required Integration by parts udv = uv - Int(vdu) u = t dv = e^(-2t/3) dt du = dt v = Int(dv) = (-3/2)e^(-2t/3) The Equation becomes: ve^(-2t/3) = (2/3)((-3/2)te^(-2t/3) + (3/2) Int(e^(-2t/3)) dt) ve^(-2t/3) = -te^(-2t/3) + (-3/2)e^(-2t/3) ve^(-2t/3) = -te^(-2t/3) - (3/2)e^(-2t/3)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.4.8. Solve the equation y ' = - (y + 1) + t ( y + 1)^(-2) as a Bernoulli equation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ???I need to use a u substitution, but am not sure how to get this going???? Bernoulli equation form is y' + p(t)y = q(t)y^n
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!