#$&* course MTH-279 06/25 around 11:30AM. Pretty good amount of confusion on this assignment as far as whether or not I am in the right direction/what comes next. Question: 3.5.6. Solve the equation dPdt = r ( 1 - P / P_c) P + M with r = 1, P_c = 1 and M = -1/4.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: 3.5.10. Solve dP/dt = k ( N - P) * P with P(0) = 100 000 assuming that P is the number of people, out of a population of N = 500 000, with a disease. Assume that k is not constant, as in the standard logistic model, but that k = 2 e^(-t) - 1. Plot your solution curve and estimate the maximum value of P, and also that value of t when P = 50 000. Interpret all your results in terms of the given situation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: dP/dt = (2 e^-t - 1) ( N - P) * P dP / ( (N - P) P) = ( 2 e^(-t) - 1) ) dt 1 / N ln( P / (N - P) ) = -2 e^(-t) - t + c ln( P / (N - P) ) = -2 N e^(-t) - N t + c ???? Not sure if I started this correctly, and if so I’m lost on the next steps????
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: "