Query_14

#$&*

course MTH-279

07/29 around 9:55PMJust turning in some homework completed leading up to test two.

Query 14 Differential Equations

*********************************************

Question: Decide whether y_1 = 3 e^t, y_2 = e^(t + 3) are solutions to the equation y '' - y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (-1) = 1 and y ' (-1) = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Take first and second derivatives and plug into the equation:

They are solutions because,

y1 = 3e^t - 3e^t = 0

y2 = e^ t+3 - e^t+3 = 0

Use the Wronskian method: f(t)g’(t) + f’(t)g(t)

(3e^t * e^t+3) - (3e^t * e^t+3) = 0

Not a fundamental set since Wronskian = 0 & linearly dependent

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: Decide whether y_1 = e^(-t) and y_2 = 2 e^(1 - t) are solutions to the equation y '' + 2 y ' + y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (0) = 1 and y ' (0) = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = e^-t

y1’ = -e^-t

y1’’ = e^-t

y2 = e^(1-t)

y2’ = -e^(1-t)

y2’’ = e^(1-t)

e^-t - 2e^-t + e^-t = 0

e^(1-t) - 2e^(1-t) + e^(1-t) = 0

Using the Wronskian method:

(e^-t * -e^1-t) - (e^(1-t) * -e^-t) = 0

Linearly dependent and not a fundamental set.

Confidence rating: 3

.............................................

Given Solution:

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating: OK

*********************************************

Question: Suppose y_1 and y_2 are solutions to the equation

y '' + alpha y ' + beta y = 0

and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t).

What are the values of alpha and beta?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = e^2t

y1’ = 2e^2t

y1’’ = 4e^2t

4e^2t + 2alpha e^2t + beta e^2t = 0

4 + 2alpha + beta - eq1

f(t)g’(t) - f’(t)g(t)

y1y2’ - y1’y2 = e^-t

e^2t y2’ - 2e^2t y2 = e^-t

(y2 e^2t)’ = e^-t

integral (y2 e^2t)’ = integral e^-t

y2 e^2t = -e^-t

y2 = -e^-3t

----------

y2 = -e^-3t

y2’ = 3e^-3t

y2’’ = -9e^-3t

-9e^-3t + 3alpha e^-3t - beta e^-3t = 0

-9 + 3alpha - beta = 0 -eq 2

-----

4 + 2alpha + beta = 0

-9 + 3alpha - beta = 0

-----

-5 + 5 alpha = 0

5alpha = 5

alpha = 1

-----

4 + 2 + beta = 0

beta = 6

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique rating: OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Suppose y_1 and y_2 are solutions to the equation

y '' + alpha y ' + beta y = 0

and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t).

What are the values of alpha and beta?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = e^2t

y1’ = 2e^2t

y1’’ = 4e^2t

4e^2t + 2alpha e^2t + beta e^2t = 0

4 + 2alpha + beta - eq1

f(t)g’(t) - f’(t)g(t)

y1y2’ - y1’y2 = e^-t

e^2t y2’ - 2e^2t y2 = e^-t

(y2 e^2t)’ = e^-t

integral (y2 e^2t)’ = integral e^-t

y2 e^2t = -e^-t

y2 = -e^-3t

----------

y2 = -e^-3t

y2’ = 3e^-3t

y2’’ = -9e^-3t

-9e^-3t + 3alpha e^-3t - beta e^-3t = 0

-9 + 3alpha - beta = 0 -eq 2

-----

4 + 2alpha + beta = 0

-9 + 3alpha - beta = 0

-----

-5 + 5 alpha = 0

5alpha = 5

alpha = 1

-----

4 + 2 + beta = 0

beta = 6

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique rating: OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: Suppose y_1 and y_2 are solutions to the equation

y '' + alpha y ' + beta y = 0

and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t).

What are the values of alpha and beta?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = e^2t

y1’ = 2e^2t

y1’’ = 4e^2t

4e^2t + 2alpha e^2t + beta e^2t = 0

4 + 2alpha + beta - eq1

f(t)g’(t) - f’(t)g(t)

y1y2’ - y1’y2 = e^-t

e^2t y2’ - 2e^2t y2 = e^-t

(y2 e^2t)’ = e^-t

integral (y2 e^2t)’ = integral e^-t

y2 e^2t = -e^-t

y2 = -e^-3t

----------

y2 = -e^-3t

y2’ = 3e^-3t

y2’’ = -9e^-3t

-9e^-3t + 3alpha e^-3t - beta e^-3t = 0

-9 + 3alpha - beta = 0 -eq 2

-----

4 + 2alpha + beta = 0

-9 + 3alpha - beta = 0

-----

-5 + 5 alpha = 0

5alpha = 5

alpha = 1

-----

4 + 2 + beta = 0

beta = 6

Confidence rating: 3

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique rating: OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#Good responses. Let me know if you have questions. &#