#$&* course MTH-279 07/29 around 10:50PM.Just turning in some problems I did leading up to test two. Query 17 Differential Equations
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Solve the equation 3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: divide by 3 to get y’’ by itself y’’ + 2sqrt3y’ / 3 + y/3 = 0 x^2 + 2sqrt3 x / 3 + 1/3 = 0 using the quadratic equation: x = -2sqrt3 /3 +/- sqrt (-2sqrt3 / 3)^2 - 4(1)(1/3) / 2(1) x = -2sqrt3 +/- sqrt 12 - 12 / 6 x = -2sqrt3 / 6 -> x = -1sqrt3 / 3 (repeated real root) so, y(t) = C1 e^ lambda t + C2 t e^lambda t y(t) = C1 e^(-1sqrt3 / 3)t + C2 t e^(-1sqrt3 / 3)t 2sqrt3 = C1 e^(-sqrt3 / 3)(0) + C2 (0) e^(-sqrt3/3)(0) 2sqrt3 = C1 + 0 C1 = 2sqrt 3 ----- y’(t) = -sqrt3 / 3 C1 e^(-sqrt3 / 3)t - sqrt3 / 3 C2 t e^(-sqrt3 /3)t + C2 e (-sqrt3 /3)t 3 = -sqrt3/3 * 2sqrt3 e^(-sqrt3/3)(0) - sqrt3 /3 C2(0) e^(-sqrt3 /3)(0) + C2 e^(-sqrt3 / 3)(0) 3 = -2 + C2 5 = C2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Solve the equation y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0, which has known solution y_1(t) = sin(t) You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Confidence rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
#$&* course MTH-279 07/29 around 10:50PM.Just turning in some problems I did leading up to test two. Query 17 Differential Equations
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Solve the equation 3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: divide by 3 to get y’’ by itself y’’ + 2sqrt3y’ / 3 + y/3 = 0 x^2 + 2sqrt3 x / 3 + 1/3 = 0 using the quadratic equation: x = -2sqrt3 /3 +/- sqrt (-2sqrt3 / 3)^2 - 4(1)(1/3) / 2(1) x = -2sqrt3 +/- sqrt 12 - 12 / 6 x = -2sqrt3 / 6 -> x = -1sqrt3 / 3 (repeated real root) so, y(t) = C1 e^ lambda t + C2 t e^lambda t y(t) = C1 e^(-1sqrt3 / 3)t + C2 t e^(-1sqrt3 / 3)t 2sqrt3 = C1 e^(-sqrt3 / 3)(0) + C2 (0) e^(-sqrt3/3)(0) 2sqrt3 = C1 + 0 C1 = 2sqrt 3 ----- y’(t) = -sqrt3 / 3 C1 e^(-sqrt3 / 3)t - sqrt3 / 3 C2 t e^(-sqrt3 /3)t + C2 e (-sqrt3 /3)t 3 = -sqrt3/3 * 2sqrt3 e^(-sqrt3/3)(0) - sqrt3 /3 C2(0) e^(-sqrt3 /3)(0) + C2 e^(-sqrt3 / 3)(0) 3 = -2 + C2 5 = C2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Solve the equation y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0, which has known solution y_1(t) = sin(t) You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Confidence rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!
#$&* course MTH-279 07/29 around 10:50PM.Just turning in some problems I did leading up to test two. Query 17 Differential Equations
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Solve the equation 3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: divide by 3 to get y’’ by itself y’’ + 2sqrt3y’ / 3 + y/3 = 0 x^2 + 2sqrt3 x / 3 + 1/3 = 0 using the quadratic equation: x = -2sqrt3 /3 +/- sqrt (-2sqrt3 / 3)^2 - 4(1)(1/3) / 2(1) x = -2sqrt3 +/- sqrt 12 - 12 / 6 x = -2sqrt3 / 6 -> x = -1sqrt3 / 3 (repeated real root) so, y(t) = C1 e^ lambda t + C2 t e^lambda t y(t) = C1 e^(-1sqrt3 / 3)t + C2 t e^(-1sqrt3 / 3)t 2sqrt3 = C1 e^(-sqrt3 / 3)(0) + C2 (0) e^(-sqrt3/3)(0) 2sqrt3 = C1 + 0 C1 = 2sqrt 3 ----- y’(t) = -sqrt3 / 3 C1 e^(-sqrt3 / 3)t - sqrt3 / 3 C2 t e^(-sqrt3 /3)t + C2 e (-sqrt3 /3)t 3 = -sqrt3/3 * 2sqrt3 e^(-sqrt3/3)(0) - sqrt3 /3 C2(0) e^(-sqrt3 /3)(0) + C2 e^(-sqrt3 / 3)(0) 3 = -2 + C2 5 = C2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Solve the equation y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0, which has known solution y_1(t) = sin(t) You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Confidence rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!