Query_18

#$&*

course MTH-279

07/29 around 11:00PMJust turning in some problems I did leading up to test two.

Query 18 Differential Equations

*********************************************

Question: A 10 kg mass stretches a spring 30 mm beyond its unloaded position. The spring is pulled down to a position 70 mm below its unloaded position and released.

Write and solve the differential equation for its motion.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

F = k delta x

aka mg = k deltax

---

k = mg/deltax

k = (10)(9.8)/(0.03)

k = (3,266.67 N/M

-----

10y’’ + 0y’ + 3266.67y = 0

y’’ + 326.67 = 0

x^2 + 326.67 = 0

x^2 = -326.67

sqrt x^2 = sqrt -326.67

use, i^2 = -1 -> i = sqrt -1

----

x^2 = -326.67 -> (-1)326.67

x^2 = i^2 (326.67)

sqrt x^2 = sqrt 326.67

x = I sqrt 326.67

x = 18.07i

----

general solution for complex root is y(t) = C1cos(lambda t) + C2 sin(lambda t)

x = lambda = 18.07i

y(t) = C1 cos (18.07t) + C2 sin(18.07t)

---

y(0) = 0.04m

----

0.04 = C1 cos(18.07(0)) + C2 sin (18.07(0))

0.04 = C1 + 0

C1 = 0.04

---

y’(0) = 0 (spring released)

y’ = -C1sin(18.07t) + C2cos(18.07t)

0 = -0.04sin(0) + C2cos(0)

0 = C2

----

y(t) = 0.04cos(18.07t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Query_18

#$&*

course MTH-279

07/29 around 11:00PMJust turning in some problems I did leading up to test two.

Query 18 Differential Equations

*********************************************

Question: A 10 kg mass stretches a spring 30 mm beyond its unloaded position. The spring is pulled down to a position 70 mm below its unloaded position and released.

Write and solve the differential equation for its motion.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

F = k delta x

aka mg = k deltax

---

k = mg/deltax

k = (10)(9.8)/(0.03)

k = (3,266.67 N/M

-----

10y’’ + 0y’ + 3266.67y = 0

y’’ + 326.67 = 0

x^2 + 326.67 = 0

x^2 = -326.67

sqrt x^2 = sqrt -326.67

use, i^2 = -1 -> i = sqrt -1

----

x^2 = -326.67 -> (-1)326.67

x^2 = i^2 (326.67)

sqrt x^2 = sqrt 326.67

x = I sqrt 326.67

x = 18.07i

----

general solution for complex root is y(t) = C1cos(lambda t) + C2 sin(lambda t)

x = lambda = 18.07i

y(t) = C1 cos (18.07t) + C2 sin(18.07t)

---

y(0) = 0.04m

----

0.04 = C1 cos(18.07(0)) + C2 sin (18.07(0))

0.04 = C1 + 0

C1 = 0.04

---

y’(0) = 0 (spring released)

y’ = -C1sin(18.07t) + C2cos(18.07t)

0 = -0.04sin(0) + C2cos(0)

0 = C2

----

y(t) = 0.04cos(18.07t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

Query_18

#$&*

course MTH-279

07/29 around 11:00PMJust turning in some problems I did leading up to test two.

Query 18 Differential Equations

*********************************************

Question: A 10 kg mass stretches a spring 30 mm beyond its unloaded position. The spring is pulled down to a position 70 mm below its unloaded position and released.

Write and solve the differential equation for its motion.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

F = k delta x

aka mg = k deltax

---

k = mg/deltax

k = (10)(9.8)/(0.03)

k = (3,266.67 N/M

-----

10y’’ + 0y’ + 3266.67y = 0

y’’ + 326.67 = 0

x^2 + 326.67 = 0

x^2 = -326.67

sqrt x^2 = sqrt -326.67

use, i^2 = -1 -> i = sqrt -1

----

x^2 = -326.67 -> (-1)326.67

x^2 = i^2 (326.67)

sqrt x^2 = sqrt 326.67

x = I sqrt 326.67

x = 18.07i

----

general solution for complex root is y(t) = C1cos(lambda t) + C2 sin(lambda t)

x = lambda = 18.07i

y(t) = C1 cos (18.07t) + C2 sin(18.07t)

---

y(0) = 0.04m

----

0.04 = C1 cos(18.07(0)) + C2 sin (18.07(0))

0.04 = C1 + 0

C1 = 0.04

---

y’(0) = 0 (spring released)

y’ = -C1sin(18.07t) + C2cos(18.07t)

0 = -0.04sin(0) + C2cos(0)

0 = C2

----

y(t) = 0.04cos(18.07t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#Your work looks good. Let me know if you have any questions. &#