#$&* course MTH-279 07/29 around 11:20PMJust turning in some work I did leading up to test two. Query 19 Differential Equations
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK ********************************************* Question: Find the general solution of the equation y '' + y ' = 6 t^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x^2 + x = 0 x(x+1) = 0 ---- x = 0, x = -1 lambda1 = 0 lambda2 = -1 --- y = C1 e^(lambda1 t) + C2e^(lambda2 t) y = C1 e^((0)t) + C2 e ^((-1)t) --- y = C1 + C2 e^-t --- to get t^2 on left side, need t^2 coefficient ---- yp(t) = At^2 + Bt + C y’p(t) = 2At + B y’’p(t) = 2A -- no t^2 in this set, so we need to move to a higher power ---- yp(t) = At^3 + Bt^2 + Ct + D yp’(t) = 3At^2 + 2Bt + C y’’p(t) = 6At + 2B -- use the last two in equation ---- y’’ + y’ = 6t^2 --- (6At+2B)+(3At^2 + 2Bt + C) = 6t^2 (match value of coefficient on each side of equation) ---- 3A = 6 -> A = 2 --- 6A + 2B = 0 12 + 2B = 0 -> B = -6 ---- 2B + C = 0 -12 + C = 0 -> C=12 ---- yp(t) = 2t^3 - 6t^2 + 12t + D --- recall y(t) = (yc(t)) + (yp(t) y(t) = (C1 + C2e^-t) + (2t^3 - 6t^2 + 12t) Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Find the general solution of the equation y '' + y ' = cos(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x^2 + x = 0 x(x+1) = 0 --- x = 0 x=-1 --- lambda1 = 0 lambda2 = -1 ---- y = C1 e^(lambda1 t) + C2 e^(lambda2 t) y = C1 e^((0)t) + C2 e^((-1)t) y = C1 + C2 e^-t ---- yp(t) = Acost + Bsint yp’(t) = -Asint + Bcost yp’’(t) = -Acost -Bsint ---- -Acost -Bsint - Asint + Bcost = cost --- -A + B = -1 -B - A = 0 ---- -2A = 1 -> A= -1/2 ----- -(-1/2) + B = 1 ½ + B + 1 B = ½ ---- y(t) = C1 + C2 e^-t - ½ cost + 1/2sint confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: OK "