#$&* course MTH-279 08/03 around 10:35 PM. Query 22 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Find the limit as t -> 0 of the matrix [ sin(t) / t, t cos(t), 3 / (t + 1); e^(3 t), sec(t), 2 t / (t^2 - 1) ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Confidence rating:
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: Find A ' (t) and A ''(t), where the derivatives are with respect to t and the matrix is A = [ sin(t), 3 t; t^2 + 2, 5 ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A’(t) = [cost, 3 ; 2t, 0] & A’’(t) = [-sint, 0 ; 2, 0] Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Write the system of equations y_1 ' = t^2 y_1 + 3 y_2 + sec(t) y_2 ' = sin(t) y _1 + t y_2 - 5 in the form y ' = P(t) y + g(t), where P(t) is a 2 x 2 matrix and y and g(t) are 2 x 1 column vectors. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: P(t) = [t^2, 3 ; sint, t] g(t) = [sect; -5] y(t) = [y1 ; y2] [y1’ ; y2’] = [t^2, 3; sint, t] * [y1 ; y2] + [sect; -5] Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: If A '' = [1, t; 0, 0] with A(0) = [ 1, 1; -2, 1] A(1) = [-1, 2; -2, 3 ] then what is the matrix A(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A’’ = [1, t ; 0, 0] -> A’ = [1t+A, t^2/2 + B ; C, D] -> A = {t^2 + At + E, t^3 + Bt + F ; Ct + G, Dt + H] A(0) = [0^2/2 + A(0) + E, 0^3 + B(0) + F ; C(0) + G, D(0) + H] A(0) = [E, F ; G, H] = [ 1, 1 ; -2, 1] E = 1, F = 1, G = -2, H = 1 ----- A(1) = [1^2/2 + A(1) + 1, 1^3/6 + B(1) + 1 ; C(1) - 2, D(1) + 1] A(1) = [3/2 + A, 7/6 + B; C - 2, D + 1] = [-1, 2; -2, 3] 3/2 + A = 1 A = -1 - 3/2 -> -2/2 - 3/2, A = -5/2 7/6 + B = 2 B = 2 - 7/6 -> 12/6 - 7/6 = 5/6, B = 5/6 C-2 = -2 C = 0 D + 1 = 3 D = 2 ---- So, A = [t^2/2 + 5/2t + 1, t^3/6 + 5/6t + 1; -2, 2t + 1] Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Find the matrix A(t), defined by A(t) = integral( B(s) ds, s from 0 to t), where B = [ e^s, 6s; cos(2 pi s), sin(2 pi s) ]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: B = [ int(0 to t) e^s ds, int(0 to t) 6s ds; int(0 to t) cos(2pi(s)) ds, int (0 to t) sin (2pi(s)) ds] A(t) = [e^t-1, 3t^2 - 0 ; sin(2pi(t)) - 0/2pi , -cos(2pi(t))/2pi - (-1)/2pi A(t) = [e^t - 1, 3t^2; sin(2pi(t))/2pi, -cos(2pi(t))/2pi + 1/2pi] Confidence rating: 2,3
.............................................
Given Solution: Self-critique (if necessary): OK Self-critique rating: OK " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: critiqued_deferred student work 140804d 08-04-2014
#$&* course MTH-279 08/03 around 10:35 PM. Query 22 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Find the limit as t -> 0 of the matrix [ sin(t) / t, t cos(t), 3 / (t + 1); e^(3 t), sec(t), 2 t / (t^2 - 1) ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Confidence rating:
.............................................
Given Solution: Self-critique (if necessary): Self-critique rating: ********************************************* Question: Find A ' (t) and A ''(t), where the derivatives are with respect to t and the matrix is A = [ sin(t), 3 t; t^2 + 2, 5 ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A’(t) = [cost, 3 ; 2t, 0] & A’’(t) = [-sint, 0 ; 2, 0] Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Write the system of equations y_1 ' = t^2 y_1 + 3 y_2 + sec(t) y_2 ' = sin(t) y _1 + t y_2 - 5 in the form y ' = P(t) y + g(t), where P(t) is a 2 x 2 matrix and y and g(t) are 2 x 1 column vectors. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: P(t) = [t^2, 3 ; sint, t] g(t) = [sect; -5] y(t) = [y1 ; y2] [y1’ ; y2’] = [t^2, 3; sint, t] * [y1 ; y2] + [sect; -5] Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: If A '' = [1, t; 0, 0] with A(0) = [ 1, 1; -2, 1] A(1) = [-1, 2; -2, 3 ] then what is the matrix A(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A’’ = [1, t ; 0, 0] -> A’ = [1t+A, t^2/2 + B ; C, D] -> A = {t^2 + At + E, t^3 + Bt + F ; Ct + G, Dt + H] A(0) = [0^2/2 + A(0) + E, 0^3 + B(0) + F ; C(0) + G, D(0) + H] A(0) = [E, F ; G, H] = [ 1, 1 ; -2, 1] E = 1, F = 1, G = -2, H = 1 ----- A(1) = [1^2/2 + A(1) + 1, 1^3/6 + B(1) + 1 ; C(1) - 2, D(1) + 1] A(1) = [3/2 + A, 7/6 + B; C - 2, D + 1] = [-1, 2; -2, 3] 3/2 + A = 1 A = -1 - 3/2 -> -2/2 - 3/2, A = -5/2 7/6 + B = 2 B = 2 - 7/6 -> 12/6 - 7/6 = 5/6, B = 5/6 C-2 = -2 C = 0 D + 1 = 3 D = 2 ---- So, A = [t^2/2 + 5/2t + 1, t^3/6 + 5/6t + 1; -2, 2t + 1] Confidence rating: 3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: Find the matrix A(t), defined by A(t) = integral( B(s) ds, s from 0 to t), where B = [ e^s, 6s; cos(2 pi s), sin(2 pi s) ]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: B = [ int(0 to t) e^s ds, int(0 to t) 6s ds; int(0 to t) cos(2pi(s)) ds, int (0 to t) sin (2pi(s)) ds] A(t) = [e^t-1, 3t^2 - 0 ; sin(2pi(t)) - 0/2pi , -cos(2pi(t))/2pi - (-1)/2pi A(t) = [e^t - 1, 3t^2; sin(2pi(t))/2pi, -cos(2pi(t))/2pi + 1/2pi] Confidence rating: 2,3
.............................................
Given Solution: Self-critique (if necessary): OK Self-critique rating: OK