#$&* course MTH-279 08/03 around 10:45 PM. Query 23 Differential Equations*********************************************
.............................................
Given Solution: Self-critique (if necessary): OK Self-critique rating: OK ********************************************* Question: The equation y ' = [ y_2; y_3; -2 y_1 + 4 y_3 + e^(3 t) ] with initial condition y(0) = [1; -2; 3] represents a higher-order equation of form y[n] + a_(n-1) * y[n-1] + ... + a^2 y '' + a_1 y ' + a_0 y = g(t). (y[n], for example, represents the nth derivative of y; a_(n-1) is understood as a with subscript n - 1). What is the higher-order equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Confidence rating: y(t) = [y1(t); y2(t); y3(t)] = [y(t); y’(t); y’’(t)] ----- -2y1 + 4y3 + e^3t -2y + 4y’’ + e^3t = y’’’ y’’’ + 2y - 4y’’ = e^3t y’’’ - 4y’’ + 2y = e^3t - higher order equation
.............................................
Given Solution: 2,3 Self-critique (if necessary): OK Self-critique rating: OK