#$&*
course MTH-279
08/03 around 10:55 PM
Query 24 Differential Equations*********************************************
Question: Verify Abel's Theorem in the interval (-infinity, infinity) for
y ' = [ 6, 5; -7, -6] * y
whose solutions are
y_1 = [ 5 e^-t; -7 e^-t ]
y_2 = [ e^t; - e^t ]
with t_0 = -1
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
y1 & y2 -> [5e^-t, e^t ; -7e^-t, -e^t]
W(t) = (5e^-t * -e^t) - (-7e^-t * e^t)
= (5e^-t * -e^t) + (7e^-t * e^t)
= (-5e^0) + (7e^0)
= -5 + 7
= 2
so, W(t) does not equal zero.
----
Abel’s theorem states if y1, y2, … yn is a set of solutions of y’ = P(t)y, a
knowing Wronskian of solutions then W(t) satisfies the scalar differential equation.
---
W’(t) = Pn-1(t)Wt
---
W(t) = W(t0)e - int(t0 to t)Pn-1(s) ds
---
W’(t) = tr[P(t)] * W(t)
---
W’(t) = 0 * 2
W’(t) = 0
Confidence rating: 2
.............................................
Given Solution:
Self-critique (if necessary): OK
Self-critique rating: OK
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
"
Self-critique (if necessary):
------------------------------------------------
Self-critique rating:
#*&!
Good responses. Let me know if you have questions.